This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | |- F = ( Scalar ` W ) |
|
| phllmhm.h | |- ., = ( .i ` W ) |
||
| phllmhm.v | |- V = ( Base ` W ) |
||
| ipdir.g | |- .+ = ( +g ` W ) |
||
| ipdir.p | |- .+^ = ( +g ` F ) |
||
| ip2di.1 | |- ( ph -> W e. PreHil ) |
||
| ip2di.2 | |- ( ph -> A e. V ) |
||
| ip2di.3 | |- ( ph -> B e. V ) |
||
| ip2di.4 | |- ( ph -> C e. V ) |
||
| ip2di.5 | |- ( ph -> D e. V ) |
||
| Assertion | ip2di | |- ( ph -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( ( A ., C ) .+^ ( B ., D ) ) .+^ ( ( A ., D ) .+^ ( B ., C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | |- F = ( Scalar ` W ) |
|
| 2 | phllmhm.h | |- ., = ( .i ` W ) |
|
| 3 | phllmhm.v | |- V = ( Base ` W ) |
|
| 4 | ipdir.g | |- .+ = ( +g ` W ) |
|
| 5 | ipdir.p | |- .+^ = ( +g ` F ) |
|
| 6 | ip2di.1 | |- ( ph -> W e. PreHil ) |
|
| 7 | ip2di.2 | |- ( ph -> A e. V ) |
|
| 8 | ip2di.3 | |- ( ph -> B e. V ) |
|
| 9 | ip2di.4 | |- ( ph -> C e. V ) |
|
| 10 | ip2di.5 | |- ( ph -> D e. V ) |
|
| 11 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 12 | 6 11 | syl | |- ( ph -> W e. LMod ) |
| 13 | 3 4 | lmodvacl | |- ( ( W e. LMod /\ C e. V /\ D e. V ) -> ( C .+ D ) e. V ) |
| 14 | 12 9 10 13 | syl3anc | |- ( ph -> ( C .+ D ) e. V ) |
| 15 | 1 2 3 4 5 | ipdir | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ ( C .+ D ) e. V ) ) -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( A ., ( C .+ D ) ) .+^ ( B ., ( C .+ D ) ) ) ) |
| 16 | 6 7 8 14 15 | syl13anc | |- ( ph -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( A ., ( C .+ D ) ) .+^ ( B ., ( C .+ D ) ) ) ) |
| 17 | 1 2 3 4 5 | ipdi | |- ( ( W e. PreHil /\ ( A e. V /\ C e. V /\ D e. V ) ) -> ( A ., ( C .+ D ) ) = ( ( A ., C ) .+^ ( A ., D ) ) ) |
| 18 | 6 7 9 10 17 | syl13anc | |- ( ph -> ( A ., ( C .+ D ) ) = ( ( A ., C ) .+^ ( A ., D ) ) ) |
| 19 | 1 2 3 4 5 | ipdi | |- ( ( W e. PreHil /\ ( B e. V /\ C e. V /\ D e. V ) ) -> ( B ., ( C .+ D ) ) = ( ( B ., C ) .+^ ( B ., D ) ) ) |
| 20 | 6 8 9 10 19 | syl13anc | |- ( ph -> ( B ., ( C .+ D ) ) = ( ( B ., C ) .+^ ( B ., D ) ) ) |
| 21 | 1 | phlsrng | |- ( W e. PreHil -> F e. *Ring ) |
| 22 | srngring | |- ( F e. *Ring -> F e. Ring ) |
|
| 23 | ringcmn | |- ( F e. Ring -> F e. CMnd ) |
|
| 24 | 6 21 22 23 | 4syl | |- ( ph -> F e. CMnd ) |
| 25 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 26 | 1 2 3 25 | ipcl | |- ( ( W e. PreHil /\ B e. V /\ C e. V ) -> ( B ., C ) e. ( Base ` F ) ) |
| 27 | 6 8 9 26 | syl3anc | |- ( ph -> ( B ., C ) e. ( Base ` F ) ) |
| 28 | 1 2 3 25 | ipcl | |- ( ( W e. PreHil /\ B e. V /\ D e. V ) -> ( B ., D ) e. ( Base ` F ) ) |
| 29 | 6 8 10 28 | syl3anc | |- ( ph -> ( B ., D ) e. ( Base ` F ) ) |
| 30 | 25 5 | cmncom | |- ( ( F e. CMnd /\ ( B ., C ) e. ( Base ` F ) /\ ( B ., D ) e. ( Base ` F ) ) -> ( ( B ., C ) .+^ ( B ., D ) ) = ( ( B ., D ) .+^ ( B ., C ) ) ) |
| 31 | 24 27 29 30 | syl3anc | |- ( ph -> ( ( B ., C ) .+^ ( B ., D ) ) = ( ( B ., D ) .+^ ( B ., C ) ) ) |
| 32 | 20 31 | eqtrd | |- ( ph -> ( B ., ( C .+ D ) ) = ( ( B ., D ) .+^ ( B ., C ) ) ) |
| 33 | 18 32 | oveq12d | |- ( ph -> ( ( A ., ( C .+ D ) ) .+^ ( B ., ( C .+ D ) ) ) = ( ( ( A ., C ) .+^ ( A ., D ) ) .+^ ( ( B ., D ) .+^ ( B ., C ) ) ) ) |
| 34 | 1 2 3 25 | ipcl | |- ( ( W e. PreHil /\ A e. V /\ C e. V ) -> ( A ., C ) e. ( Base ` F ) ) |
| 35 | 6 7 9 34 | syl3anc | |- ( ph -> ( A ., C ) e. ( Base ` F ) ) |
| 36 | 1 2 3 25 | ipcl | |- ( ( W e. PreHil /\ A e. V /\ D e. V ) -> ( A ., D ) e. ( Base ` F ) ) |
| 37 | 6 7 10 36 | syl3anc | |- ( ph -> ( A ., D ) e. ( Base ` F ) ) |
| 38 | 25 5 | cmn4 | |- ( ( F e. CMnd /\ ( ( A ., C ) e. ( Base ` F ) /\ ( A ., D ) e. ( Base ` F ) ) /\ ( ( B ., D ) e. ( Base ` F ) /\ ( B ., C ) e. ( Base ` F ) ) ) -> ( ( ( A ., C ) .+^ ( A ., D ) ) .+^ ( ( B ., D ) .+^ ( B ., C ) ) ) = ( ( ( A ., C ) .+^ ( B ., D ) ) .+^ ( ( A ., D ) .+^ ( B ., C ) ) ) ) |
| 39 | 24 35 37 29 27 38 | syl122anc | |- ( ph -> ( ( ( A ., C ) .+^ ( A ., D ) ) .+^ ( ( B ., D ) .+^ ( B ., C ) ) ) = ( ( ( A ., C ) .+^ ( B ., D ) ) .+^ ( ( A ., D ) .+^ ( B ., C ) ) ) ) |
| 40 | 16 33 39 | 3eqtrd | |- ( ph -> ( ( A .+ B ) ., ( C .+ D ) ) = ( ( ( A ., C ) .+^ ( B ., D ) ) .+^ ( ( A ., D ) .+^ ( B ., C ) ) ) ) |