This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product (right-distributivity). Equation I3 of Ponnusamy p. 362. (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | |- F = ( Scalar ` W ) |
|
| phllmhm.h | |- ., = ( .i ` W ) |
||
| phllmhm.v | |- V = ( Base ` W ) |
||
| ipdir.g | |- .+ = ( +g ` W ) |
||
| ipdir.p | |- .+^ = ( +g ` F ) |
||
| Assertion | ipdir | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .+ B ) ., C ) = ( ( A ., C ) .+^ ( B ., C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | |- F = ( Scalar ` W ) |
|
| 2 | phllmhm.h | |- ., = ( .i ` W ) |
|
| 3 | phllmhm.v | |- V = ( Base ` W ) |
|
| 4 | ipdir.g | |- .+ = ( +g ` W ) |
|
| 5 | ipdir.p | |- .+^ = ( +g ` F ) |
|
| 6 | eqid | |- ( x e. V |-> ( x ., C ) ) = ( x e. V |-> ( x ., C ) ) |
|
| 7 | 1 2 3 6 | phllmhm | |- ( ( W e. PreHil /\ C e. V ) -> ( x e. V |-> ( x ., C ) ) e. ( W LMHom ( ringLMod ` F ) ) ) |
| 8 | 7 | 3ad2antr3 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( x e. V |-> ( x ., C ) ) e. ( W LMHom ( ringLMod ` F ) ) ) |
| 9 | lmghm | |- ( ( x e. V |-> ( x ., C ) ) e. ( W LMHom ( ringLMod ` F ) ) -> ( x e. V |-> ( x ., C ) ) e. ( W GrpHom ( ringLMod ` F ) ) ) |
|
| 10 | 8 9 | syl | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( x e. V |-> ( x ., C ) ) e. ( W GrpHom ( ringLMod ` F ) ) ) |
| 11 | simpr1 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> A e. V ) |
|
| 12 | simpr2 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> B e. V ) |
|
| 13 | rlmplusg | |- ( +g ` F ) = ( +g ` ( ringLMod ` F ) ) |
|
| 14 | 5 13 | eqtri | |- .+^ = ( +g ` ( ringLMod ` F ) ) |
| 15 | 3 4 14 | ghmlin | |- ( ( ( x e. V |-> ( x ., C ) ) e. ( W GrpHom ( ringLMod ` F ) ) /\ A e. V /\ B e. V ) -> ( ( x e. V |-> ( x ., C ) ) ` ( A .+ B ) ) = ( ( ( x e. V |-> ( x ., C ) ) ` A ) .+^ ( ( x e. V |-> ( x ., C ) ) ` B ) ) ) |
| 16 | 10 11 12 15 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( x e. V |-> ( x ., C ) ) ` ( A .+ B ) ) = ( ( ( x e. V |-> ( x ., C ) ) ` A ) .+^ ( ( x e. V |-> ( x ., C ) ) ` B ) ) ) |
| 17 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 18 | 3 4 | lmodvacl | |- ( ( W e. LMod /\ A e. V /\ B e. V ) -> ( A .+ B ) e. V ) |
| 19 | 17 18 | syl3an1 | |- ( ( W e. PreHil /\ A e. V /\ B e. V ) -> ( A .+ B ) e. V ) |
| 20 | 19 | 3adant3r3 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A .+ B ) e. V ) |
| 21 | oveq1 | |- ( x = ( A .+ B ) -> ( x ., C ) = ( ( A .+ B ) ., C ) ) |
|
| 22 | ovex | |- ( x ., C ) e. _V |
|
| 23 | 21 6 22 | fvmpt3i | |- ( ( A .+ B ) e. V -> ( ( x e. V |-> ( x ., C ) ) ` ( A .+ B ) ) = ( ( A .+ B ) ., C ) ) |
| 24 | 20 23 | syl | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( x e. V |-> ( x ., C ) ) ` ( A .+ B ) ) = ( ( A .+ B ) ., C ) ) |
| 25 | oveq1 | |- ( x = A -> ( x ., C ) = ( A ., C ) ) |
|
| 26 | 25 6 22 | fvmpt3i | |- ( A e. V -> ( ( x e. V |-> ( x ., C ) ) ` A ) = ( A ., C ) ) |
| 27 | 11 26 | syl | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( x e. V |-> ( x ., C ) ) ` A ) = ( A ., C ) ) |
| 28 | oveq1 | |- ( x = B -> ( x ., C ) = ( B ., C ) ) |
|
| 29 | 28 6 22 | fvmpt3i | |- ( B e. V -> ( ( x e. V |-> ( x ., C ) ) ` B ) = ( B ., C ) ) |
| 30 | 12 29 | syl | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( x e. V |-> ( x ., C ) ) ` B ) = ( B ., C ) ) |
| 31 | 27 30 | oveq12d | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( x e. V |-> ( x ., C ) ) ` A ) .+^ ( ( x e. V |-> ( x ., C ) ) ` B ) ) = ( ( A ., C ) .+^ ( B ., C ) ) ) |
| 32 | 16 24 31 | 3eqtr3d | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( A .+ B ) ., C ) = ( ( A ., C ) .+^ ( B ., C ) ) ) |