This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The involution function in a star ring distributes over addition. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | srngcl.i | |- .* = ( *r ` R ) |
|
| srngcl.b | |- B = ( Base ` R ) |
||
| srngadd.p | |- .+ = ( +g ` R ) |
||
| Assertion | srngadd | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( .* ` ( X .+ Y ) ) = ( ( .* ` X ) .+ ( .* ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | srngcl.i | |- .* = ( *r ` R ) |
|
| 2 | srngcl.b | |- B = ( Base ` R ) |
|
| 3 | srngadd.p | |- .+ = ( +g ` R ) |
|
| 4 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
| 5 | eqid | |- ( *rf ` R ) = ( *rf ` R ) |
|
| 6 | 4 5 | srngrhm | |- ( R e. *Ring -> ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) ) |
| 7 | rhmghm | |- ( ( *rf ` R ) e. ( R RingHom ( oppR ` R ) ) -> ( *rf ` R ) e. ( R GrpHom ( oppR ` R ) ) ) |
|
| 8 | 6 7 | syl | |- ( R e. *Ring -> ( *rf ` R ) e. ( R GrpHom ( oppR ` R ) ) ) |
| 9 | 4 3 | oppradd | |- .+ = ( +g ` ( oppR ` R ) ) |
| 10 | 2 3 9 | ghmlin | |- ( ( ( *rf ` R ) e. ( R GrpHom ( oppR ` R ) ) /\ X e. B /\ Y e. B ) -> ( ( *rf ` R ) ` ( X .+ Y ) ) = ( ( ( *rf ` R ) ` X ) .+ ( ( *rf ` R ) ` Y ) ) ) |
| 11 | 8 10 | syl3an1 | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( ( *rf ` R ) ` ( X .+ Y ) ) = ( ( ( *rf ` R ) ` X ) .+ ( ( *rf ` R ) ` Y ) ) ) |
| 12 | srngring | |- ( R e. *Ring -> R e. Ring ) |
|
| 13 | 2 3 | ringacl | |- ( ( R e. Ring /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
| 14 | 12 13 | syl3an1 | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
| 15 | 2 1 5 | stafval | |- ( ( X .+ Y ) e. B -> ( ( *rf ` R ) ` ( X .+ Y ) ) = ( .* ` ( X .+ Y ) ) ) |
| 16 | 14 15 | syl | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( ( *rf ` R ) ` ( X .+ Y ) ) = ( .* ` ( X .+ Y ) ) ) |
| 17 | 2 1 5 | stafval | |- ( X e. B -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) |
| 18 | 17 | 3ad2ant2 | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( ( *rf ` R ) ` X ) = ( .* ` X ) ) |
| 19 | 2 1 5 | stafval | |- ( Y e. B -> ( ( *rf ` R ) ` Y ) = ( .* ` Y ) ) |
| 20 | 19 | 3ad2ant3 | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( ( *rf ` R ) ` Y ) = ( .* ` Y ) ) |
| 21 | 18 20 | oveq12d | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( ( ( *rf ` R ) ` X ) .+ ( ( *rf ` R ) ` Y ) ) = ( ( .* ` X ) .+ ( .* ` Y ) ) ) |
| 22 | 11 16 21 | 3eqtr3d | |- ( ( R e. *Ring /\ X e. B /\ Y e. B ) -> ( .* ` ( X .+ Y ) ) = ( ( .* ` X ) .+ ( .* ` Y ) ) ) |