This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| ipdir.g | ⊢ + = ( +g ‘ 𝑊 ) | ||
| ipdir.p | ⊢ ⨣ = ( +g ‘ 𝐹 ) | ||
| Assertion | ipdi | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) ⨣ ( 𝐴 , 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | ipdir.g | ⊢ + = ( +g ‘ 𝑊 ) | |
| 5 | ipdir.p | ⊢ ⨣ = ( +g ‘ 𝐹 ) | |
| 6 | simpl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ PreHil ) | |
| 7 | simpr2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) | |
| 8 | simpr3 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) | |
| 9 | simpr1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑉 ) | |
| 10 | 1 2 3 4 5 | ipdir | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) ) → ( ( 𝐵 + 𝐶 ) , 𝐴 ) = ( ( 𝐵 , 𝐴 ) ⨣ ( 𝐶 , 𝐴 ) ) ) |
| 11 | 6 7 8 9 10 | syl13anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐵 + 𝐶 ) , 𝐴 ) = ( ( 𝐵 , 𝐴 ) ⨣ ( 𝐶 , 𝐴 ) ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( ( 𝐵 + 𝐶 ) , 𝐴 ) ) = ( ( *𝑟 ‘ 𝐹 ) ‘ ( ( 𝐵 , 𝐴 ) ⨣ ( 𝐶 , 𝐴 ) ) ) ) |
| 13 | 1 | phlsrng | ⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐹 ∈ *-Ring ) |
| 15 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 16 | 1 2 3 15 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐵 , 𝐴 ) ∈ ( Base ‘ 𝐹 ) ) |
| 17 | 6 7 9 16 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐵 , 𝐴 ) ∈ ( Base ‘ 𝐹 ) ) |
| 18 | 1 2 3 15 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐶 , 𝐴 ) ∈ ( Base ‘ 𝐹 ) ) |
| 19 | 6 8 9 18 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐶 , 𝐴 ) ∈ ( Base ‘ 𝐹 ) ) |
| 20 | eqid | ⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) | |
| 21 | 20 15 5 | srngadd | ⊢ ( ( 𝐹 ∈ *-Ring ∧ ( 𝐵 , 𝐴 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐶 , 𝐴 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( ( 𝐵 , 𝐴 ) ⨣ ( 𝐶 , 𝐴 ) ) ) = ( ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐵 , 𝐴 ) ) ⨣ ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐶 , 𝐴 ) ) ) ) |
| 22 | 14 17 19 21 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( ( 𝐵 , 𝐴 ) ⨣ ( 𝐶 , 𝐴 ) ) ) = ( ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐵 , 𝐴 ) ) ⨣ ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐶 , 𝐴 ) ) ) ) |
| 23 | 12 22 | eqtrd | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( ( 𝐵 + 𝐶 ) , 𝐴 ) ) = ( ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐵 , 𝐴 ) ) ⨣ ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐶 , 𝐴 ) ) ) ) |
| 24 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 25 | 24 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
| 26 | 3 4 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 + 𝐶 ) ∈ 𝑉 ) |
| 27 | 25 7 8 26 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐵 + 𝐶 ) ∈ 𝑉 ) |
| 28 | 1 2 3 20 | ipcj | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐵 + 𝐶 ) ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( ( 𝐵 + 𝐶 ) , 𝐴 ) ) = ( 𝐴 , ( 𝐵 + 𝐶 ) ) ) |
| 29 | 6 27 9 28 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( ( 𝐵 + 𝐶 ) , 𝐴 ) ) = ( 𝐴 , ( 𝐵 + 𝐶 ) ) ) |
| 30 | 1 2 3 20 | ipcj | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐵 , 𝐴 ) ) = ( 𝐴 , 𝐵 ) ) |
| 31 | 6 7 9 30 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐵 , 𝐴 ) ) = ( 𝐴 , 𝐵 ) ) |
| 32 | 1 2 3 20 | ipcj | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐶 , 𝐴 ) ) = ( 𝐴 , 𝐶 ) ) |
| 33 | 6 8 9 32 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐶 , 𝐴 ) ) = ( 𝐴 , 𝐶 ) ) |
| 34 | 31 33 | oveq12d | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐵 , 𝐴 ) ) ⨣ ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝐶 , 𝐴 ) ) ) = ( ( 𝐴 , 𝐵 ) ⨣ ( 𝐴 , 𝐶 ) ) ) |
| 35 | 23 29 34 | 3eqtr3d | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) ⨣ ( 𝐴 , 𝐶 ) ) ) |