This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipffn.1 | |- V = ( Base ` W ) |
|
| ipffn.2 | |- ., = ( .if ` W ) |
||
| phlipf.s | |- S = ( Scalar ` W ) |
||
| phlipf.k | |- K = ( Base ` S ) |
||
| Assertion | phlipf | |- ( W e. PreHil -> ., : ( V X. V ) --> K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipffn.1 | |- V = ( Base ` W ) |
|
| 2 | ipffn.2 | |- ., = ( .if ` W ) |
|
| 3 | phlipf.s | |- S = ( Scalar ` W ) |
|
| 4 | phlipf.k | |- K = ( Base ` S ) |
|
| 5 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 6 | 3 5 1 4 | ipcl | |- ( ( W e. PreHil /\ x e. V /\ y e. V ) -> ( x ( .i ` W ) y ) e. K ) |
| 7 | 6 | 3expb | |- ( ( W e. PreHil /\ ( x e. V /\ y e. V ) ) -> ( x ( .i ` W ) y ) e. K ) |
| 8 | 7 | ralrimivva | |- ( W e. PreHil -> A. x e. V A. y e. V ( x ( .i ` W ) y ) e. K ) |
| 9 | 1 5 2 | ipffval | |- ., = ( x e. V , y e. V |-> ( x ( .i ` W ) y ) ) |
| 10 | 9 | fmpo | |- ( A. x e. V A. y e. V ( x ( .i ` W ) y ) e. K <-> ., : ( V X. V ) --> K ) |
| 11 | 8 10 | sylib | |- ( W e. PreHil -> ., : ( V X. V ) --> K ) |