This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product. (Contributed by NM, 17-Apr-2008) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| ipdir.g | ⊢ + = ( +g ‘ 𝑊 ) | ||
| ipdir.p | ⊢ ⨣ = ( +g ‘ 𝐹 ) | ||
| ip2di.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | ||
| ip2di.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| ip2di.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| ip2di.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| ip2di.5 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| Assertion | ip2di | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) ⨣ ( ( 𝐴 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | ipdir.g | ⊢ + = ( +g ‘ 𝑊 ) | |
| 5 | ipdir.p | ⊢ ⨣ = ( +g ‘ 𝐹 ) | |
| 6 | ip2di.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | |
| 7 | ip2di.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 8 | ip2di.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 9 | ip2di.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 10 | ip2di.5 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 11 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 12 | 6 11 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 13 | 3 4 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐶 + 𝐷 ) ∈ 𝑉 ) |
| 14 | 12 9 10 13 | syl3anc | ⊢ ( 𝜑 → ( 𝐶 + 𝐷 ) ∈ 𝑉 ) |
| 15 | 1 2 3 4 5 | ipdir | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ ( 𝐶 + 𝐷 ) ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 , ( 𝐶 + 𝐷 ) ) ⨣ ( 𝐵 , ( 𝐶 + 𝐷 ) ) ) ) |
| 16 | 6 7 8 14 15 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 , ( 𝐶 + 𝐷 ) ) ⨣ ( 𝐵 , ( 𝐶 + 𝐷 ) ) ) ) |
| 17 | 1 2 3 4 5 | ipdi | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐴 , 𝐷 ) ) ) |
| 18 | 6 7 9 10 17 | syl13anc | ⊢ ( 𝜑 → ( 𝐴 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐴 , 𝐷 ) ) ) |
| 19 | 1 2 3 4 5 | ipdi | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐵 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐵 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) ) |
| 20 | 6 8 9 10 19 | syl13anc | ⊢ ( 𝜑 → ( 𝐵 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐵 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) ) |
| 21 | 1 | phlsrng | ⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |
| 22 | srngring | ⊢ ( 𝐹 ∈ *-Ring → 𝐹 ∈ Ring ) | |
| 23 | ringcmn | ⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ CMnd ) | |
| 24 | 6 21 22 23 | 4syl | ⊢ ( 𝜑 → 𝐹 ∈ CMnd ) |
| 25 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 26 | 1 2 3 25 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
| 27 | 6 8 9 26 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
| 28 | 1 2 3 25 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
| 29 | 6 8 10 28 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
| 30 | 25 5 | cmncom | ⊢ ( ( 𝐹 ∈ CMnd ∧ ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝐵 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) = ( ( 𝐵 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) |
| 31 | 24 27 29 30 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐵 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) = ( ( 𝐵 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) |
| 32 | 20 31 | eqtrd | ⊢ ( 𝜑 → ( 𝐵 , ( 𝐶 + 𝐷 ) ) = ( ( 𝐵 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) |
| 33 | 18 32 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐴 , ( 𝐶 + 𝐷 ) ) ⨣ ( 𝐵 , ( 𝐶 + 𝐷 ) ) ) = ( ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐴 , 𝐷 ) ) ⨣ ( ( 𝐵 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) ) |
| 34 | 1 2 3 25 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
| 35 | 6 7 9 34 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
| 36 | 1 2 3 25 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
| 37 | 6 7 10 36 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
| 38 | 25 5 | cmn4 | ⊢ ( ( 𝐹 ∈ CMnd ∧ ( ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) ∧ ( ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) ) → ( ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐴 , 𝐷 ) ) ⨣ ( ( 𝐵 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) ⨣ ( ( 𝐴 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) ) |
| 39 | 24 35 37 29 27 38 | syl122anc | ⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐴 , 𝐷 ) ) ⨣ ( ( 𝐵 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) ⨣ ( ( 𝐴 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) ) |
| 40 | 16 33 39 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐶 + 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) ⨣ ( 𝐵 , 𝐷 ) ) ⨣ ( ( 𝐴 , 𝐷 ) ⨣ ( 𝐵 , 𝐶 ) ) ) ) |