This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ioorf.1 | |- F = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
|
| Assertion | ioorinv2 | |- ( ( A (,) B ) =/= (/) -> ( F ` ( A (,) B ) ) = <. A , B >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioorf.1 | |- F = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
|
| 2 | ioorebas | |- ( A (,) B ) e. ran (,) |
|
| 3 | 1 | ioorval | |- ( ( A (,) B ) e. ran (,) -> ( F ` ( A (,) B ) ) = if ( ( A (,) B ) = (/) , <. 0 , 0 >. , <. inf ( ( A (,) B ) , RR* , < ) , sup ( ( A (,) B ) , RR* , < ) >. ) ) |
| 4 | 2 3 | ax-mp | |- ( F ` ( A (,) B ) ) = if ( ( A (,) B ) = (/) , <. 0 , 0 >. , <. inf ( ( A (,) B ) , RR* , < ) , sup ( ( A (,) B ) , RR* , < ) >. ) |
| 5 | ifnefalse | |- ( ( A (,) B ) =/= (/) -> if ( ( A (,) B ) = (/) , <. 0 , 0 >. , <. inf ( ( A (,) B ) , RR* , < ) , sup ( ( A (,) B ) , RR* , < ) >. ) = <. inf ( ( A (,) B ) , RR* , < ) , sup ( ( A (,) B ) , RR* , < ) >. ) |
|
| 6 | n0 | |- ( ( A (,) B ) =/= (/) <-> E. x x e. ( A (,) B ) ) |
|
| 7 | eliooxr | |- ( x e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* ) ) |
|
| 8 | 7 | exlimiv | |- ( E. x x e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* ) ) |
| 9 | 6 8 | sylbi | |- ( ( A (,) B ) =/= (/) -> ( A e. RR* /\ B e. RR* ) ) |
| 10 | 9 | simpld | |- ( ( A (,) B ) =/= (/) -> A e. RR* ) |
| 11 | 9 | simprd | |- ( ( A (,) B ) =/= (/) -> B e. RR* ) |
| 12 | id | |- ( ( A (,) B ) =/= (/) -> ( A (,) B ) =/= (/) ) |
|
| 13 | df-ioo | |- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
|
| 14 | idd | |- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w < B ) ) |
|
| 15 | xrltle | |- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w <_ B ) ) |
|
| 16 | idd | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A < w ) ) |
|
| 17 | xrltle | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A <_ w ) ) |
|
| 18 | 13 14 15 16 17 | ixxlb | |- ( ( A e. RR* /\ B e. RR* /\ ( A (,) B ) =/= (/) ) -> inf ( ( A (,) B ) , RR* , < ) = A ) |
| 19 | 10 11 12 18 | syl3anc | |- ( ( A (,) B ) =/= (/) -> inf ( ( A (,) B ) , RR* , < ) = A ) |
| 20 | 13 14 15 16 17 | ixxub | |- ( ( A e. RR* /\ B e. RR* /\ ( A (,) B ) =/= (/) ) -> sup ( ( A (,) B ) , RR* , < ) = B ) |
| 21 | 10 11 12 20 | syl3anc | |- ( ( A (,) B ) =/= (/) -> sup ( ( A (,) B ) , RR* , < ) = B ) |
| 22 | 19 21 | opeq12d | |- ( ( A (,) B ) =/= (/) -> <. inf ( ( A (,) B ) , RR* , < ) , sup ( ( A (,) B ) , RR* , < ) >. = <. A , B >. ) |
| 23 | 5 22 | eqtrd | |- ( ( A (,) B ) =/= (/) -> if ( ( A (,) B ) = (/) , <. 0 , 0 >. , <. inf ( ( A (,) B ) , RR* , < ) , sup ( ( A (,) B ) , RR* , < ) >. ) = <. A , B >. ) |
| 24 | 4 23 | eqtrid | |- ( ( A (,) B ) =/= (/) -> ( F ` ( A (,) B ) ) = <. A , B >. ) |