This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ioorf.1 | |- F = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
|
| Assertion | ioorval | |- ( A e. ran (,) -> ( F ` A ) = if ( A = (/) , <. 0 , 0 >. , <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioorf.1 | |- F = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
|
| 2 | eqeq1 | |- ( x = A -> ( x = (/) <-> A = (/) ) ) |
|
| 3 | infeq1 | |- ( x = A -> inf ( x , RR* , < ) = inf ( A , RR* , < ) ) |
|
| 4 | supeq1 | |- ( x = A -> sup ( x , RR* , < ) = sup ( A , RR* , < ) ) |
|
| 5 | 3 4 | opeq12d | |- ( x = A -> <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. = <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) |
| 6 | 2 5 | ifbieq2d | |- ( x = A -> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) = if ( A = (/) , <. 0 , 0 >. , <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) ) |
| 7 | opex | |- <. 0 , 0 >. e. _V |
|
| 8 | opex | |- <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. e. _V |
|
| 9 | 7 8 | ifex | |- if ( A = (/) , <. 0 , 0 >. , <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) e. _V |
| 10 | 6 1 9 | fvmpt | |- ( A e. ran (,) -> ( F ` A ) = if ( A = (/) , <. 0 , 0 >. , <. inf ( A , RR* , < ) , sup ( A , RR* , < ) >. ) ) |