This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by AV, 13-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ioorf.1 | |- F = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
|
| Assertion | ioorf | |- F : ran (,) --> ( <_ i^i ( RR* X. RR* ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioorf.1 | |- F = ( x e. ran (,) |-> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) ) |
|
| 2 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 3 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 4 | ovelrn | |- ( (,) Fn ( RR* X. RR* ) -> ( x e. ran (,) <-> E. a e. RR* E. b e. RR* x = ( a (,) b ) ) ) |
|
| 5 | 2 3 4 | mp2b | |- ( x e. ran (,) <-> E. a e. RR* E. b e. RR* x = ( a (,) b ) ) |
| 6 | 0le0 | |- 0 <_ 0 |
|
| 7 | df-br | |- ( 0 <_ 0 <-> <. 0 , 0 >. e. <_ ) |
|
| 8 | 6 7 | mpbi | |- <. 0 , 0 >. e. <_ |
| 9 | 0xr | |- 0 e. RR* |
|
| 10 | opelxpi | |- ( ( 0 e. RR* /\ 0 e. RR* ) -> <. 0 , 0 >. e. ( RR* X. RR* ) ) |
|
| 11 | 9 9 10 | mp2an | |- <. 0 , 0 >. e. ( RR* X. RR* ) |
| 12 | 8 11 | elini | |- <. 0 , 0 >. e. ( <_ i^i ( RR* X. RR* ) ) |
| 13 | 12 | a1i | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ x = (/) ) -> <. 0 , 0 >. e. ( <_ i^i ( RR* X. RR* ) ) ) |
| 14 | simplr | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> x = ( a (,) b ) ) |
|
| 15 | 14 | infeq1d | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> inf ( x , RR* , < ) = inf ( ( a (,) b ) , RR* , < ) ) |
| 16 | simplll | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> a e. RR* ) |
|
| 17 | simpllr | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> b e. RR* ) |
|
| 18 | simpr | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> -. x = (/) ) |
|
| 19 | 18 | neqned | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> x =/= (/) ) |
| 20 | 14 19 | eqnetrrd | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> ( a (,) b ) =/= (/) ) |
| 21 | df-ioo | |- (,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x < z /\ z < y ) } ) |
|
| 22 | idd | |- ( ( w e. RR* /\ b e. RR* ) -> ( w < b -> w < b ) ) |
|
| 23 | xrltle | |- ( ( w e. RR* /\ b e. RR* ) -> ( w < b -> w <_ b ) ) |
|
| 24 | idd | |- ( ( a e. RR* /\ w e. RR* ) -> ( a < w -> a < w ) ) |
|
| 25 | xrltle | |- ( ( a e. RR* /\ w e. RR* ) -> ( a < w -> a <_ w ) ) |
|
| 26 | 21 22 23 24 25 | ixxlb | |- ( ( a e. RR* /\ b e. RR* /\ ( a (,) b ) =/= (/) ) -> inf ( ( a (,) b ) , RR* , < ) = a ) |
| 27 | 16 17 20 26 | syl3anc | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> inf ( ( a (,) b ) , RR* , < ) = a ) |
| 28 | 15 27 | eqtrd | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> inf ( x , RR* , < ) = a ) |
| 29 | 14 | supeq1d | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> sup ( x , RR* , < ) = sup ( ( a (,) b ) , RR* , < ) ) |
| 30 | 21 22 23 24 25 | ixxub | |- ( ( a e. RR* /\ b e. RR* /\ ( a (,) b ) =/= (/) ) -> sup ( ( a (,) b ) , RR* , < ) = b ) |
| 31 | 16 17 20 30 | syl3anc | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> sup ( ( a (,) b ) , RR* , < ) = b ) |
| 32 | 29 31 | eqtrd | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> sup ( x , RR* , < ) = b ) |
| 33 | 28 32 | opeq12d | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. = <. a , b >. ) |
| 34 | ioon0 | |- ( ( a e. RR* /\ b e. RR* ) -> ( ( a (,) b ) =/= (/) <-> a < b ) ) |
|
| 35 | 34 | ad2antrr | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> ( ( a (,) b ) =/= (/) <-> a < b ) ) |
| 36 | 20 35 | mpbid | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> a < b ) |
| 37 | xrltle | |- ( ( a e. RR* /\ b e. RR* ) -> ( a < b -> a <_ b ) ) |
|
| 38 | 37 | ad2antrr | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> ( a < b -> a <_ b ) ) |
| 39 | 36 38 | mpd | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> a <_ b ) |
| 40 | df-br | |- ( a <_ b <-> <. a , b >. e. <_ ) |
|
| 41 | 39 40 | sylib | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> <. a , b >. e. <_ ) |
| 42 | opelxpi | |- ( ( a e. RR* /\ b e. RR* ) -> <. a , b >. e. ( RR* X. RR* ) ) |
|
| 43 | 42 | ad2antrr | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> <. a , b >. e. ( RR* X. RR* ) ) |
| 44 | 41 43 | elind | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> <. a , b >. e. ( <_ i^i ( RR* X. RR* ) ) ) |
| 45 | 33 44 | eqeltrd | |- ( ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) /\ -. x = (/) ) -> <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. e. ( <_ i^i ( RR* X. RR* ) ) ) |
| 46 | 13 45 | ifclda | |- ( ( ( a e. RR* /\ b e. RR* ) /\ x = ( a (,) b ) ) -> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) e. ( <_ i^i ( RR* X. RR* ) ) ) |
| 47 | 46 | ex | |- ( ( a e. RR* /\ b e. RR* ) -> ( x = ( a (,) b ) -> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) e. ( <_ i^i ( RR* X. RR* ) ) ) ) |
| 48 | 47 | rexlimivv | |- ( E. a e. RR* E. b e. RR* x = ( a (,) b ) -> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) e. ( <_ i^i ( RR* X. RR* ) ) ) |
| 49 | 5 48 | sylbi | |- ( x e. ran (,) -> if ( x = (/) , <. 0 , 0 >. , <. inf ( x , RR* , < ) , sup ( x , RR* , < ) >. ) e. ( <_ i^i ( RR* X. RR* ) ) ) |
| 50 | 1 49 | fmpti | |- F : ran (,) --> ( <_ i^i ( RR* X. RR* ) ) |