This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for class difference. Theorem 39 of Suppes p. 29. (Contributed by NM, 17-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difundi | |- ( A \ ( B u. C ) ) = ( ( A \ B ) i^i ( A \ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfun3 | |- ( B u. C ) = ( _V \ ( ( _V \ B ) i^i ( _V \ C ) ) ) |
|
| 2 | 1 | difeq2i | |- ( A \ ( B u. C ) ) = ( A \ ( _V \ ( ( _V \ B ) i^i ( _V \ C ) ) ) ) |
| 3 | inindi | |- ( A i^i ( ( _V \ B ) i^i ( _V \ C ) ) ) = ( ( A i^i ( _V \ B ) ) i^i ( A i^i ( _V \ C ) ) ) |
|
| 4 | dfin2 | |- ( A i^i ( ( _V \ B ) i^i ( _V \ C ) ) ) = ( A \ ( _V \ ( ( _V \ B ) i^i ( _V \ C ) ) ) ) |
|
| 5 | invdif | |- ( A i^i ( _V \ B ) ) = ( A \ B ) |
|
| 6 | invdif | |- ( A i^i ( _V \ C ) ) = ( A \ C ) |
|
| 7 | 5 6 | ineq12i | |- ( ( A i^i ( _V \ B ) ) i^i ( A i^i ( _V \ C ) ) ) = ( ( A \ B ) i^i ( A \ C ) ) |
| 8 | 3 4 7 | 3eqtr3i | |- ( A \ ( _V \ ( ( _V \ B ) i^i ( _V \ C ) ) ) ) = ( ( A \ B ) i^i ( A \ C ) ) |
| 9 | 2 8 | eqtri | |- ( A \ ( B u. C ) ) = ( ( A \ B ) i^i ( A \ C ) ) |