This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fifo.1 | |- F = ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) |
|
| Assertion | fifo | |- ( A e. V -> F : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fifo.1 | |- F = ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) |-> |^| y ) |
|
| 2 | eldifsni | |- ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) -> y =/= (/) ) |
|
| 3 | intex | |- ( y =/= (/) <-> |^| y e. _V ) |
|
| 4 | 2 3 | sylib | |- ( y e. ( ( ~P A i^i Fin ) \ { (/) } ) -> |^| y e. _V ) |
| 5 | 4 | rgen | |- A. y e. ( ( ~P A i^i Fin ) \ { (/) } ) |^| y e. _V |
| 6 | 1 | fnmpt | |- ( A. y e. ( ( ~P A i^i Fin ) \ { (/) } ) |^| y e. _V -> F Fn ( ( ~P A i^i Fin ) \ { (/) } ) ) |
| 7 | 5 6 | mp1i | |- ( A e. V -> F Fn ( ( ~P A i^i Fin ) \ { (/) } ) ) |
| 8 | dffn4 | |- ( F Fn ( ( ~P A i^i Fin ) \ { (/) } ) <-> F : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ran F ) |
|
| 9 | 7 8 | sylib | |- ( A e. V -> F : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ran F ) |
| 10 | elfi2 | |- ( A e. V -> ( x e. ( fi ` A ) <-> E. y e. ( ( ~P A i^i Fin ) \ { (/) } ) x = |^| y ) ) |
|
| 11 | 1 | elrnmpt | |- ( x e. _V -> ( x e. ran F <-> E. y e. ( ( ~P A i^i Fin ) \ { (/) } ) x = |^| y ) ) |
| 12 | 11 | elv | |- ( x e. ran F <-> E. y e. ( ( ~P A i^i Fin ) \ { (/) } ) x = |^| y ) |
| 13 | 10 12 | bitr4di | |- ( A e. V -> ( x e. ( fi ` A ) <-> x e. ran F ) ) |
| 14 | 13 | eqrdv | |- ( A e. V -> ( fi ` A ) = ran F ) |
| 15 | foeq3 | |- ( ( fi ` A ) = ran F -> ( F : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) <-> F : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ran F ) ) |
|
| 16 | 14 15 | syl | |- ( A e. V -> ( F : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) <-> F : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ran F ) ) |
| 17 | 9 16 | mpbird | |- ( A e. V -> F : ( ( ~P A i^i Fin ) \ { (/) } ) -onto-> ( fi ` A ) ) |