This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak dominance agrees with normal for numerable right sets. (Contributed by Stefan O'Rear, 28-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wdomnumr | |- ( B e. dom card -> ( A ~<_* B <-> A ~<_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brwdom | |- ( B e. dom card -> ( A ~<_* B <-> ( A = (/) \/ E. x x : B -onto-> A ) ) ) |
|
| 2 | 0domg | |- ( B e. dom card -> (/) ~<_ B ) |
|
| 3 | breq1 | |- ( A = (/) -> ( A ~<_ B <-> (/) ~<_ B ) ) |
|
| 4 | 2 3 | syl5ibrcom | |- ( B e. dom card -> ( A = (/) -> A ~<_ B ) ) |
| 5 | fodomnum | |- ( B e. dom card -> ( x : B -onto-> A -> A ~<_ B ) ) |
|
| 6 | 5 | exlimdv | |- ( B e. dom card -> ( E. x x : B -onto-> A -> A ~<_ B ) ) |
| 7 | 4 6 | jaod | |- ( B e. dom card -> ( ( A = (/) \/ E. x x : B -onto-> A ) -> A ~<_ B ) ) |
| 8 | 1 7 | sylbid | |- ( B e. dom card -> ( A ~<_* B -> A ~<_ B ) ) |
| 9 | domwdom | |- ( A ~<_ B -> A ~<_* B ) |
|
| 10 | 8 9 | impbid1 | |- ( B e. dom card -> ( A ~<_* B <-> A ~<_ B ) ) |