This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limensuc | |- ( ( A e. V /\ Lim A ) -> A ~~ suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( A = if ( Lim A , A , On ) -> ( A e. V <-> if ( Lim A , A , On ) e. V ) ) |
|
| 2 | id | |- ( A = if ( Lim A , A , On ) -> A = if ( Lim A , A , On ) ) |
|
| 3 | suceq | |- ( A = if ( Lim A , A , On ) -> suc A = suc if ( Lim A , A , On ) ) |
|
| 4 | 2 3 | breq12d | |- ( A = if ( Lim A , A , On ) -> ( A ~~ suc A <-> if ( Lim A , A , On ) ~~ suc if ( Lim A , A , On ) ) ) |
| 5 | 1 4 | imbi12d | |- ( A = if ( Lim A , A , On ) -> ( ( A e. V -> A ~~ suc A ) <-> ( if ( Lim A , A , On ) e. V -> if ( Lim A , A , On ) ~~ suc if ( Lim A , A , On ) ) ) ) |
| 6 | limeq | |- ( A = if ( Lim A , A , On ) -> ( Lim A <-> Lim if ( Lim A , A , On ) ) ) |
|
| 7 | limeq | |- ( On = if ( Lim A , A , On ) -> ( Lim On <-> Lim if ( Lim A , A , On ) ) ) |
|
| 8 | limon | |- Lim On |
|
| 9 | 6 7 8 | elimhyp | |- Lim if ( Lim A , A , On ) |
| 10 | 9 | limensuci | |- ( if ( Lim A , A , On ) e. V -> if ( Lim A , A , On ) ~~ suc if ( Lim A , A , On ) ) |
| 11 | 5 10 | dedth | |- ( Lim A -> ( A e. V -> A ~~ suc A ) ) |
| 12 | 11 | impcom | |- ( ( A e. V /\ Lim A ) -> A ~~ suc A ) |