This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 28-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
||
| inf3lem.3 | |- A e. _V |
||
| inf3lem.4 | |- B e. _V |
||
| Assertion | inf3lem1 | |- ( A e. _om -> ( F ` A ) C_ ( F ` suc A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| 2 | inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
|
| 3 | inf3lem.3 | |- A e. _V |
|
| 4 | inf3lem.4 | |- B e. _V |
|
| 5 | fveq2 | |- ( v = (/) -> ( F ` v ) = ( F ` (/) ) ) |
|
| 6 | suceq | |- ( v = (/) -> suc v = suc (/) ) |
|
| 7 | 6 | fveq2d | |- ( v = (/) -> ( F ` suc v ) = ( F ` suc (/) ) ) |
| 8 | 5 7 | sseq12d | |- ( v = (/) -> ( ( F ` v ) C_ ( F ` suc v ) <-> ( F ` (/) ) C_ ( F ` suc (/) ) ) ) |
| 9 | fveq2 | |- ( v = u -> ( F ` v ) = ( F ` u ) ) |
|
| 10 | suceq | |- ( v = u -> suc v = suc u ) |
|
| 11 | 10 | fveq2d | |- ( v = u -> ( F ` suc v ) = ( F ` suc u ) ) |
| 12 | 9 11 | sseq12d | |- ( v = u -> ( ( F ` v ) C_ ( F ` suc v ) <-> ( F ` u ) C_ ( F ` suc u ) ) ) |
| 13 | fveq2 | |- ( v = suc u -> ( F ` v ) = ( F ` suc u ) ) |
|
| 14 | suceq | |- ( v = suc u -> suc v = suc suc u ) |
|
| 15 | 14 | fveq2d | |- ( v = suc u -> ( F ` suc v ) = ( F ` suc suc u ) ) |
| 16 | 13 15 | sseq12d | |- ( v = suc u -> ( ( F ` v ) C_ ( F ` suc v ) <-> ( F ` suc u ) C_ ( F ` suc suc u ) ) ) |
| 17 | fveq2 | |- ( v = A -> ( F ` v ) = ( F ` A ) ) |
|
| 18 | suceq | |- ( v = A -> suc v = suc A ) |
|
| 19 | 18 | fveq2d | |- ( v = A -> ( F ` suc v ) = ( F ` suc A ) ) |
| 20 | 17 19 | sseq12d | |- ( v = A -> ( ( F ` v ) C_ ( F ` suc v ) <-> ( F ` A ) C_ ( F ` suc A ) ) ) |
| 21 | 1 2 3 3 | inf3lemb | |- ( F ` (/) ) = (/) |
| 22 | 0ss | |- (/) C_ ( F ` suc (/) ) |
|
| 23 | 21 22 | eqsstri | |- ( F ` (/) ) C_ ( F ` suc (/) ) |
| 24 | sstr2 | |- ( ( v i^i x ) C_ ( F ` u ) -> ( ( F ` u ) C_ ( F ` suc u ) -> ( v i^i x ) C_ ( F ` suc u ) ) ) |
|
| 25 | 24 | com12 | |- ( ( F ` u ) C_ ( F ` suc u ) -> ( ( v i^i x ) C_ ( F ` u ) -> ( v i^i x ) C_ ( F ` suc u ) ) ) |
| 26 | 25 | anim2d | |- ( ( F ` u ) C_ ( F ` suc u ) -> ( ( v e. x /\ ( v i^i x ) C_ ( F ` u ) ) -> ( v e. x /\ ( v i^i x ) C_ ( F ` suc u ) ) ) ) |
| 27 | vex | |- u e. _V |
|
| 28 | 1 2 27 3 | inf3lemc | |- ( u e. _om -> ( F ` suc u ) = ( G ` ( F ` u ) ) ) |
| 29 | 28 | eleq2d | |- ( u e. _om -> ( v e. ( F ` suc u ) <-> v e. ( G ` ( F ` u ) ) ) ) |
| 30 | vex | |- v e. _V |
|
| 31 | fvex | |- ( F ` u ) e. _V |
|
| 32 | 1 2 30 31 | inf3lema | |- ( v e. ( G ` ( F ` u ) ) <-> ( v e. x /\ ( v i^i x ) C_ ( F ` u ) ) ) |
| 33 | 29 32 | bitrdi | |- ( u e. _om -> ( v e. ( F ` suc u ) <-> ( v e. x /\ ( v i^i x ) C_ ( F ` u ) ) ) ) |
| 34 | peano2b | |- ( u e. _om <-> suc u e. _om ) |
|
| 35 | 27 | sucex | |- suc u e. _V |
| 36 | 1 2 35 3 | inf3lemc | |- ( suc u e. _om -> ( F ` suc suc u ) = ( G ` ( F ` suc u ) ) ) |
| 37 | 34 36 | sylbi | |- ( u e. _om -> ( F ` suc suc u ) = ( G ` ( F ` suc u ) ) ) |
| 38 | 37 | eleq2d | |- ( u e. _om -> ( v e. ( F ` suc suc u ) <-> v e. ( G ` ( F ` suc u ) ) ) ) |
| 39 | fvex | |- ( F ` suc u ) e. _V |
|
| 40 | 1 2 30 39 | inf3lema | |- ( v e. ( G ` ( F ` suc u ) ) <-> ( v e. x /\ ( v i^i x ) C_ ( F ` suc u ) ) ) |
| 41 | 38 40 | bitrdi | |- ( u e. _om -> ( v e. ( F ` suc suc u ) <-> ( v e. x /\ ( v i^i x ) C_ ( F ` suc u ) ) ) ) |
| 42 | 33 41 | imbi12d | |- ( u e. _om -> ( ( v e. ( F ` suc u ) -> v e. ( F ` suc suc u ) ) <-> ( ( v e. x /\ ( v i^i x ) C_ ( F ` u ) ) -> ( v e. x /\ ( v i^i x ) C_ ( F ` suc u ) ) ) ) ) |
| 43 | 26 42 | imbitrrid | |- ( u e. _om -> ( ( F ` u ) C_ ( F ` suc u ) -> ( v e. ( F ` suc u ) -> v e. ( F ` suc suc u ) ) ) ) |
| 44 | 43 | imp | |- ( ( u e. _om /\ ( F ` u ) C_ ( F ` suc u ) ) -> ( v e. ( F ` suc u ) -> v e. ( F ` suc suc u ) ) ) |
| 45 | 44 | ssrdv | |- ( ( u e. _om /\ ( F ` u ) C_ ( F ` suc u ) ) -> ( F ` suc u ) C_ ( F ` suc suc u ) ) |
| 46 | 45 | ex | |- ( u e. _om -> ( ( F ` u ) C_ ( F ` suc u ) -> ( F ` suc u ) C_ ( F ` suc suc u ) ) ) |
| 47 | 8 12 16 20 23 46 | finds | |- ( A e. _om -> ( F ` A ) C_ ( F ` suc A ) ) |