This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasmnd.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasmnd.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasmnd.p | |- .+ = ( +g ` R ) |
||
| imasmnd.f | |- ( ph -> F : V -onto-> B ) |
||
| imasmnd.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
||
| imasmnd2.r | |- ( ph -> R e. W ) |
||
| imasmnd2.1 | |- ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. V ) |
||
| imasmnd2.2 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .+ z ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) |
||
| imasmnd2.3 | |- ( ph -> .0. e. V ) |
||
| imasmnd2.4 | |- ( ( ph /\ x e. V ) -> ( F ` ( .0. .+ x ) ) = ( F ` x ) ) |
||
| imasmnd2.5 | |- ( ( ph /\ x e. V ) -> ( F ` ( x .+ .0. ) ) = ( F ` x ) ) |
||
| Assertion | imasmnd2 | |- ( ph -> ( U e. Mnd /\ ( F ` .0. ) = ( 0g ` U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasmnd.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasmnd.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasmnd.p | |- .+ = ( +g ` R ) |
|
| 4 | imasmnd.f | |- ( ph -> F : V -onto-> B ) |
|
| 5 | imasmnd.e | |- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
|
| 6 | imasmnd2.r | |- ( ph -> R e. W ) |
|
| 7 | imasmnd2.1 | |- ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. V ) |
|
| 8 | imasmnd2.2 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .+ z ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) |
|
| 9 | imasmnd2.3 | |- ( ph -> .0. e. V ) |
|
| 10 | imasmnd2.4 | |- ( ( ph /\ x e. V ) -> ( F ` ( .0. .+ x ) ) = ( F ` x ) ) |
|
| 11 | imasmnd2.5 | |- ( ( ph /\ x e. V ) -> ( F ` ( x .+ .0. ) ) = ( F ` x ) ) |
|
| 12 | 1 2 4 6 | imasbas | |- ( ph -> B = ( Base ` U ) ) |
| 13 | eqidd | |- ( ph -> ( +g ` U ) = ( +g ` U ) ) |
|
| 14 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 15 | 7 | 3expb | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. V ) |
| 16 | 15 | caovclg | |- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .+ q ) e. V ) |
| 17 | 4 5 1 2 6 3 14 16 | imasaddf | |- ( ph -> ( +g ` U ) : ( B X. B ) --> B ) |
| 18 | fovcdm | |- ( ( ( +g ` U ) : ( B X. B ) --> B /\ u e. B /\ v e. B ) -> ( u ( +g ` U ) v ) e. B ) |
|
| 19 | 17 18 | syl3an1 | |- ( ( ph /\ u e. B /\ v e. B ) -> ( u ( +g ` U ) v ) e. B ) |
| 20 | forn | |- ( F : V -onto-> B -> ran F = B ) |
|
| 21 | 4 20 | syl | |- ( ph -> ran F = B ) |
| 22 | 21 | eleq2d | |- ( ph -> ( u e. ran F <-> u e. B ) ) |
| 23 | 21 | eleq2d | |- ( ph -> ( v e. ran F <-> v e. B ) ) |
| 24 | 21 | eleq2d | |- ( ph -> ( w e. ran F <-> w e. B ) ) |
| 25 | 22 23 24 | 3anbi123d | |- ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( u e. B /\ v e. B /\ w e. B ) ) ) |
| 26 | fofn | |- ( F : V -onto-> B -> F Fn V ) |
|
| 27 | 4 26 | syl | |- ( ph -> F Fn V ) |
| 28 | fvelrnb | |- ( F Fn V -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) |
|
| 29 | fvelrnb | |- ( F Fn V -> ( v e. ran F <-> E. y e. V ( F ` y ) = v ) ) |
|
| 30 | fvelrnb | |- ( F Fn V -> ( w e. ran F <-> E. z e. V ( F ` z ) = w ) ) |
|
| 31 | 28 29 30 | 3anbi123d | |- ( F Fn V -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 32 | 27 31 | syl | |- ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 33 | 25 32 | bitr3d | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 34 | 3reeanv | |- ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) |
|
| 35 | 33 34 | bitr4di | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) ) ) |
| 36 | simpl | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ph ) |
|
| 37 | 7 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ y ) e. V ) |
| 38 | simpr3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. V ) |
|
| 39 | 4 5 1 2 6 3 14 | imasaddval | |- ( ( ph /\ ( x .+ y ) e. V /\ z e. V ) -> ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) .+ z ) ) ) |
| 40 | 36 37 38 39 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) .+ z ) ) ) |
| 41 | simpr1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. V ) |
|
| 42 | 16 | caovclg | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) |
| 43 | 42 | 3adantr1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) |
| 44 | 4 5 1 2 6 3 14 | imasaddval | |- ( ( ph /\ x e. V /\ ( y .+ z ) e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) |
| 45 | 36 41 43 44 | syl3anc | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) |
| 46 | 8 40 45 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) ) |
| 47 | 4 5 1 2 6 3 14 | imasaddval | |- ( ( ph /\ x e. V /\ y e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
| 48 | 47 | 3adant3r3 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
| 49 | 48 | oveq1d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) ) |
| 50 | 4 5 1 2 6 3 14 | imasaddval | |- ( ( ph /\ y e. V /\ z e. V ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
| 51 | 50 | 3adant3r1 | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
| 52 | 51 | oveq2d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) ) |
| 53 | 46 49 52 | 3eqtr4d | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) ) |
| 54 | simp1 | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` x ) = u ) |
|
| 55 | simp2 | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` y ) = v ) |
|
| 56 | 54 55 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( u ( +g ` U ) v ) ) |
| 57 | simp3 | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` z ) = w ) |
|
| 58 | 56 57 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( u ( +g ` U ) v ) ( +g ` U ) w ) ) |
| 59 | 55 57 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( v ( +g ` U ) w ) ) |
| 60 | 54 59 | oveq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) |
| 61 | 58 60 | eqeq12d | |- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) <-> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 62 | 53 61 | syl5ibcom | |- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 63 | 62 | 3exp2 | |- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) ) ) ) |
| 64 | 63 | imp32 | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) ) |
| 65 | 64 | rexlimdv | |- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 66 | 65 | rexlimdvva | |- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 67 | 35 66 | sylbid | |- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 68 | 67 | imp | |- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) |
| 69 | fof | |- ( F : V -onto-> B -> F : V --> B ) |
|
| 70 | 4 69 | syl | |- ( ph -> F : V --> B ) |
| 71 | 70 9 | ffvelcdmd | |- ( ph -> ( F ` .0. ) e. B ) |
| 72 | 27 28 | syl | |- ( ph -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) |
| 73 | 22 72 | bitr3d | |- ( ph -> ( u e. B <-> E. x e. V ( F ` x ) = u ) ) |
| 74 | simpl | |- ( ( ph /\ x e. V ) -> ph ) |
|
| 75 | 9 | adantr | |- ( ( ph /\ x e. V ) -> .0. e. V ) |
| 76 | simpr | |- ( ( ph /\ x e. V ) -> x e. V ) |
|
| 77 | 4 5 1 2 6 3 14 | imasaddval | |- ( ( ph /\ .0. e. V /\ x e. V ) -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` ( .0. .+ x ) ) ) |
| 78 | 74 75 76 77 | syl3anc | |- ( ( ph /\ x e. V ) -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` ( .0. .+ x ) ) ) |
| 79 | 78 10 | eqtrd | |- ( ( ph /\ x e. V ) -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` x ) ) |
| 80 | oveq2 | |- ( ( F ` x ) = u -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( ( F ` .0. ) ( +g ` U ) u ) ) |
|
| 81 | id | |- ( ( F ` x ) = u -> ( F ` x ) = u ) |
|
| 82 | 80 81 | eqeq12d | |- ( ( F ` x ) = u -> ( ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` x ) <-> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) |
| 83 | 79 82 | syl5ibcom | |- ( ( ph /\ x e. V ) -> ( ( F ` x ) = u -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) |
| 84 | 83 | rexlimdva | |- ( ph -> ( E. x e. V ( F ` x ) = u -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) |
| 85 | 73 84 | sylbid | |- ( ph -> ( u e. B -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) |
| 86 | 85 | imp | |- ( ( ph /\ u e. B ) -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) |
| 87 | 4 5 1 2 6 3 14 | imasaddval | |- ( ( ph /\ x e. V /\ .0. e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` .0. ) ) = ( F ` ( x .+ .0. ) ) ) |
| 88 | 75 87 | mpd3an3 | |- ( ( ph /\ x e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` .0. ) ) = ( F ` ( x .+ .0. ) ) ) |
| 89 | 88 11 | eqtrd | |- ( ( ph /\ x e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` .0. ) ) = ( F ` x ) ) |
| 90 | oveq1 | |- ( ( F ` x ) = u -> ( ( F ` x ) ( +g ` U ) ( F ` .0. ) ) = ( u ( +g ` U ) ( F ` .0. ) ) ) |
|
| 91 | 90 81 | eqeq12d | |- ( ( F ` x ) = u -> ( ( ( F ` x ) ( +g ` U ) ( F ` .0. ) ) = ( F ` x ) <-> ( u ( +g ` U ) ( F ` .0. ) ) = u ) ) |
| 92 | 89 91 | syl5ibcom | |- ( ( ph /\ x e. V ) -> ( ( F ` x ) = u -> ( u ( +g ` U ) ( F ` .0. ) ) = u ) ) |
| 93 | 92 | rexlimdva | |- ( ph -> ( E. x e. V ( F ` x ) = u -> ( u ( +g ` U ) ( F ` .0. ) ) = u ) ) |
| 94 | 73 93 | sylbid | |- ( ph -> ( u e. B -> ( u ( +g ` U ) ( F ` .0. ) ) = u ) ) |
| 95 | 94 | imp | |- ( ( ph /\ u e. B ) -> ( u ( +g ` U ) ( F ` .0. ) ) = u ) |
| 96 | 12 13 19 68 71 86 95 | ismndd | |- ( ph -> U e. Mnd ) |
| 97 | 12 13 71 86 95 | grpidd | |- ( ph -> ( F ` .0. ) = ( 0g ` U ) ) |
| 98 | 96 97 | jca | |- ( ph -> ( U e. Mnd /\ ( F ` .0. ) = ( 0g ` U ) ) ) |