This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unirnbl | |- ( D e. ( *Met ` X ) -> U. ran ( ball ` D ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blf | |- ( D e. ( *Met ` X ) -> ( ball ` D ) : ( X X. RR* ) --> ~P X ) |
|
| 2 | 1 | frnd | |- ( D e. ( *Met ` X ) -> ran ( ball ` D ) C_ ~P X ) |
| 3 | sspwuni | |- ( ran ( ball ` D ) C_ ~P X <-> U. ran ( ball ` D ) C_ X ) |
|
| 4 | 2 3 | sylib | |- ( D e. ( *Met ` X ) -> U. ran ( ball ` D ) C_ X ) |
| 5 | 1rp | |- 1 e. RR+ |
|
| 6 | blcntr | |- ( ( D e. ( *Met ` X ) /\ x e. X /\ 1 e. RR+ ) -> x e. ( x ( ball ` D ) 1 ) ) |
|
| 7 | 5 6 | mp3an3 | |- ( ( D e. ( *Met ` X ) /\ x e. X ) -> x e. ( x ( ball ` D ) 1 ) ) |
| 8 | 1xr | |- 1 e. RR* |
|
| 9 | blelrn | |- ( ( D e. ( *Met ` X ) /\ x e. X /\ 1 e. RR* ) -> ( x ( ball ` D ) 1 ) e. ran ( ball ` D ) ) |
|
| 10 | 8 9 | mp3an3 | |- ( ( D e. ( *Met ` X ) /\ x e. X ) -> ( x ( ball ` D ) 1 ) e. ran ( ball ` D ) ) |
| 11 | elunii | |- ( ( x e. ( x ( ball ` D ) 1 ) /\ ( x ( ball ` D ) 1 ) e. ran ( ball ` D ) ) -> x e. U. ran ( ball ` D ) ) |
|
| 12 | 7 10 11 | syl2anc | |- ( ( D e. ( *Met ` X ) /\ x e. X ) -> x e. U. ran ( ball ` D ) ) |
| 13 | 4 12 | eqelssd | |- ( D e. ( *Met ` X ) -> U. ran ( ball ` D ) = X ) |