This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasf1obl.u | |- ( ph -> U = ( F "s R ) ) |
|
| imasf1obl.v | |- ( ph -> V = ( Base ` R ) ) |
||
| imasf1obl.f | |- ( ph -> F : V -1-1-onto-> B ) |
||
| imasf1oms.r | |- ( ph -> R e. MetSp ) |
||
| Assertion | imasf1oms | |- ( ph -> U e. MetSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasf1obl.u | |- ( ph -> U = ( F "s R ) ) |
|
| 2 | imasf1obl.v | |- ( ph -> V = ( Base ` R ) ) |
|
| 3 | imasf1obl.f | |- ( ph -> F : V -1-1-onto-> B ) |
|
| 4 | imasf1oms.r | |- ( ph -> R e. MetSp ) |
|
| 5 | msxms | |- ( R e. MetSp -> R e. *MetSp ) |
|
| 6 | 4 5 | syl | |- ( ph -> R e. *MetSp ) |
| 7 | 1 2 3 6 | imasf1oxms | |- ( ph -> U e. *MetSp ) |
| 8 | eqid | |- ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` R ) |` ( V X. V ) ) |
|
| 9 | eqid | |- ( dist ` U ) = ( dist ` U ) |
|
| 10 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 11 | eqid | |- ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) |
|
| 12 | 10 11 | msmet | |- ( R e. MetSp -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( Met ` ( Base ` R ) ) ) |
| 13 | 4 12 | syl | |- ( ph -> ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) e. ( Met ` ( Base ` R ) ) ) |
| 14 | 2 | sqxpeqd | |- ( ph -> ( V X. V ) = ( ( Base ` R ) X. ( Base ` R ) ) ) |
| 15 | 14 | reseq2d | |- ( ph -> ( ( dist ` R ) |` ( V X. V ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) |
| 16 | 2 | fveq2d | |- ( ph -> ( Met ` V ) = ( Met ` ( Base ` R ) ) ) |
| 17 | 13 15 16 | 3eltr4d | |- ( ph -> ( ( dist ` R ) |` ( V X. V ) ) e. ( Met ` V ) ) |
| 18 | 1 2 3 4 8 9 17 | imasf1omet | |- ( ph -> ( dist ` U ) e. ( Met ` B ) ) |
| 19 | f1ofo | |- ( F : V -1-1-onto-> B -> F : V -onto-> B ) |
|
| 20 | 3 19 | syl | |- ( ph -> F : V -onto-> B ) |
| 21 | 1 2 20 4 | imasbas | |- ( ph -> B = ( Base ` U ) ) |
| 22 | 21 | fveq2d | |- ( ph -> ( Met ` B ) = ( Met ` ( Base ` U ) ) ) |
| 23 | 18 22 | eleqtrd | |- ( ph -> ( dist ` U ) e. ( Met ` ( Base ` U ) ) ) |
| 24 | ssid | |- ( Base ` U ) C_ ( Base ` U ) |
|
| 25 | metres2 | |- ( ( ( dist ` U ) e. ( Met ` ( Base ` U ) ) /\ ( Base ` U ) C_ ( Base ` U ) ) -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( Met ` ( Base ` U ) ) ) |
|
| 26 | 23 24 25 | sylancl | |- ( ph -> ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( Met ` ( Base ` U ) ) ) |
| 27 | eqid | |- ( TopOpen ` U ) = ( TopOpen ` U ) |
|
| 28 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 29 | eqid | |- ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) = ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) |
|
| 30 | 27 28 29 | isms | |- ( U e. MetSp <-> ( U e. *MetSp /\ ( ( dist ` U ) |` ( ( Base ` U ) X. ( Base ` U ) ) ) e. ( Met ` ( Base ` U ) ) ) ) |
| 31 | 7 26 30 | sylanbrc | |- ( ph -> U e. MetSp ) |