This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for imasubc . (Contributed by Zhi Wang, 6-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imasubclem1.f | |- ( ph -> F e. V ) |
|
| imasubclem1.g | |- ( ph -> G e. W ) |
||
| Assertion | imasubclem1 | |- ( ph -> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubclem1.f | |- ( ph -> F e. V ) |
|
| 2 | imasubclem1.g | |- ( ph -> G e. W ) |
|
| 3 | cnvexg | |- ( F e. V -> `' F e. _V ) |
|
| 4 | 1 3 | syl | |- ( ph -> `' F e. _V ) |
| 5 | 4 | imaexd | |- ( ph -> ( `' F " A ) e. _V ) |
| 6 | cnvexg | |- ( G e. W -> `' G e. _V ) |
|
| 7 | 2 6 | syl | |- ( ph -> `' G e. _V ) |
| 8 | 7 | imaexd | |- ( ph -> ( `' G " B ) e. _V ) |
| 9 | 5 8 | xpexd | |- ( ph -> ( ( `' F " A ) X. ( `' G " B ) ) e. _V ) |
| 10 | fvex | |- ( H ` C ) e. _V |
|
| 11 | 10 | imaex | |- ( ( H ` C ) " D ) e. _V |
| 12 | 11 | rgenw | |- A. x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V |
| 13 | iunexg | |- ( ( ( ( `' F " A ) X. ( `' G " B ) ) e. _V /\ A. x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V ) -> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V ) |
|
| 14 | 9 12 13 | sylancl | |- ( ph -> U_ x e. ( ( `' F " A ) X. ( `' G " B ) ) ( ( H ` C ) " D ) e. _V ) |