This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Source categories of a functor have the same set of objects and morphisms. (Contributed by Zhi Wang, 10-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funchomf.1 | |- ( ph -> F ( A Func C ) G ) |
|
| funchomf.2 | |- ( ph -> F ( B Func D ) G ) |
||
| Assertion | funchomf | |- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funchomf.1 | |- ( ph -> F ( A Func C ) G ) |
|
| 2 | funchomf.2 | |- ( ph -> F ( B Func D ) G ) |
|
| 3 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 4 | eqid | |- ( Hom ` A ) = ( Hom ` A ) |
|
| 5 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 6 | 1 | adantr | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> F ( A Func C ) G ) |
| 7 | simprl | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> x e. ( Base ` A ) ) |
|
| 8 | simprr | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> y e. ( Base ` A ) ) |
|
| 9 | 3 4 5 6 7 8 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( x G y ) : ( x ( Hom ` A ) y ) --> ( ( F ` x ) ( Hom ` C ) ( F ` y ) ) ) |
| 10 | 9 | ffnd | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( x G y ) Fn ( x ( Hom ` A ) y ) ) |
| 11 | eqid | |- ( Base ` B ) = ( Base ` B ) |
|
| 12 | eqid | |- ( Hom ` B ) = ( Hom ` B ) |
|
| 13 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 14 | 2 | adantr | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> F ( B Func D ) G ) |
| 15 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 16 | 3 15 1 | funcf1 | |- ( ph -> F : ( Base ` A ) --> ( Base ` C ) ) |
| 17 | 16 | ffnd | |- ( ph -> F Fn ( Base ` A ) ) |
| 18 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 19 | 11 18 2 | funcf1 | |- ( ph -> F : ( Base ` B ) --> ( Base ` D ) ) |
| 20 | 19 | ffnd | |- ( ph -> F Fn ( Base ` B ) ) |
| 21 | fndmu | |- ( ( F Fn ( Base ` A ) /\ F Fn ( Base ` B ) ) -> ( Base ` A ) = ( Base ` B ) ) |
|
| 22 | 17 20 21 | syl2anc | |- ( ph -> ( Base ` A ) = ( Base ` B ) ) |
| 23 | 22 | adantr | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( Base ` A ) = ( Base ` B ) ) |
| 24 | 7 23 | eleqtrd | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> x e. ( Base ` B ) ) |
| 25 | 8 23 | eleqtrd | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> y e. ( Base ` B ) ) |
| 26 | 11 12 13 14 24 25 | funcf2 | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( x G y ) : ( x ( Hom ` B ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 27 | 26 | ffnd | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( x G y ) Fn ( x ( Hom ` B ) y ) ) |
| 28 | fndmu | |- ( ( ( x G y ) Fn ( x ( Hom ` A ) y ) /\ ( x G y ) Fn ( x ( Hom ` B ) y ) ) -> ( x ( Hom ` A ) y ) = ( x ( Hom ` B ) y ) ) |
|
| 29 | 10 27 28 | syl2anc | |- ( ( ph /\ ( x e. ( Base ` A ) /\ y e. ( Base ` A ) ) ) -> ( x ( Hom ` A ) y ) = ( x ( Hom ` B ) y ) ) |
| 30 | 29 | ralrimivva | |- ( ph -> A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( Hom ` A ) y ) = ( x ( Hom ` B ) y ) ) |
| 31 | eqidd | |- ( ph -> ( Base ` A ) = ( Base ` A ) ) |
|
| 32 | 4 12 31 22 | homfeq | |- ( ph -> ( ( Homf ` A ) = ( Homf ` B ) <-> A. x e. ( Base ` A ) A. y e. ( Base ` A ) ( x ( Hom ` A ) y ) = ( x ( Hom ` B ) y ) ) ) |
| 33 | 30 32 | mpbird | |- ( ph -> ( Homf ` A ) = ( Homf ` B ) ) |