This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for an identity functor. (Contributed by Zhi Wang, 10-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idfurcl | |- ( ( idFunc ` C ) e. ( D Func E ) -> C e. Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | |- <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. e. _V |
|
| 2 | 1 | csbex | |- [_ ( Base ` t ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. e. _V |
| 3 | df-idfu | |- idFunc = ( t e. Cat |-> [_ ( Base ` t ) / b ]_ <. ( _I |` b ) , ( z e. ( b X. b ) |-> ( _I |` ( ( Hom ` t ) ` z ) ) ) >. ) |
|
| 4 | 2 3 | dmmpti | |- dom idFunc = Cat |
| 5 | relfunc | |- Rel ( D Func E ) |
|
| 6 | 0nelrel0 | |- ( Rel ( D Func E ) -> -. (/) e. ( D Func E ) ) |
|
| 7 | 5 6 | ax-mp | |- -. (/) e. ( D Func E ) |
| 8 | 4 7 | ndmfvrcl | |- ( ( idFunc ` C ) e. ( D Func E ) -> C e. Cat ) |