This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for scalar product and composition of operators. (Contributed by NM, 13-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | homco1 | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( A .op T ) o. U ) = ( A .op ( T o. U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvco3 | |- ( ( U : ~H --> ~H /\ x e. ~H ) -> ( ( ( A .op T ) o. U ) ` x ) = ( ( A .op T ) ` ( U ` x ) ) ) |
|
| 2 | 1 | 3ad2antl3 | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) o. U ) ` x ) = ( ( A .op T ) ` ( U ` x ) ) ) |
| 3 | fvco3 | |- ( ( U : ~H --> ~H /\ x e. ~H ) -> ( ( T o. U ) ` x ) = ( T ` ( U ` x ) ) ) |
|
| 4 | 3 | 3ad2antl3 | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( T o. U ) ` x ) = ( T ` ( U ` x ) ) ) |
| 5 | 4 | oveq2d | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T o. U ) ` x ) ) = ( A .h ( T ` ( U ` x ) ) ) ) |
| 6 | ffvelcdm | |- ( ( U : ~H --> ~H /\ x e. ~H ) -> ( U ` x ) e. ~H ) |
|
| 7 | homval | |- ( ( A e. CC /\ T : ~H --> ~H /\ ( U ` x ) e. ~H ) -> ( ( A .op T ) ` ( U ` x ) ) = ( A .h ( T ` ( U ` x ) ) ) ) |
|
| 8 | 6 7 | syl3an3 | |- ( ( A e. CC /\ T : ~H --> ~H /\ ( U : ~H --> ~H /\ x e. ~H ) ) -> ( ( A .op T ) ` ( U ` x ) ) = ( A .h ( T ` ( U ` x ) ) ) ) |
| 9 | 8 | 3expa | |- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ ( U : ~H --> ~H /\ x e. ~H ) ) -> ( ( A .op T ) ` ( U ` x ) ) = ( A .h ( T ` ( U ` x ) ) ) ) |
| 10 | 9 | exp43 | |- ( A e. CC -> ( T : ~H --> ~H -> ( U : ~H --> ~H -> ( x e. ~H -> ( ( A .op T ) ` ( U ` x ) ) = ( A .h ( T ` ( U ` x ) ) ) ) ) ) ) |
| 11 | 10 | 3imp1 | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op T ) ` ( U ` x ) ) = ( A .h ( T ` ( U ` x ) ) ) ) |
| 12 | 5 11 | eqtr4d | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T o. U ) ` x ) ) = ( ( A .op T ) ` ( U ` x ) ) ) |
| 13 | 2 12 | eqtr4d | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) o. U ) ` x ) = ( A .h ( ( T o. U ) ` x ) ) ) |
| 14 | fco | |- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T o. U ) : ~H --> ~H ) |
|
| 15 | homval | |- ( ( A e. CC /\ ( T o. U ) : ~H --> ~H /\ x e. ~H ) -> ( ( A .op ( T o. U ) ) ` x ) = ( A .h ( ( T o. U ) ` x ) ) ) |
|
| 16 | 14 15 | syl3an2 | |- ( ( A e. CC /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( T o. U ) ) ` x ) = ( A .h ( ( T o. U ) ` x ) ) ) |
| 17 | 16 | 3expia | |- ( ( A e. CC /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( x e. ~H -> ( ( A .op ( T o. U ) ) ` x ) = ( A .h ( ( T o. U ) ` x ) ) ) ) |
| 18 | 17 | 3impb | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( x e. ~H -> ( ( A .op ( T o. U ) ) ` x ) = ( A .h ( ( T o. U ) ` x ) ) ) ) |
| 19 | 18 | imp | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( T o. U ) ) ` x ) = ( A .h ( ( T o. U ) ` x ) ) ) |
| 20 | 13 19 | eqtr4d | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) o. U ) ` x ) = ( ( A .op ( T o. U ) ) ` x ) ) |
| 21 | 20 | ralrimiva | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> A. x e. ~H ( ( ( A .op T ) o. U ) ` x ) = ( ( A .op ( T o. U ) ) ` x ) ) |
| 22 | homulcl | |- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) : ~H --> ~H ) |
|
| 23 | fco | |- ( ( ( A .op T ) : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( A .op T ) o. U ) : ~H --> ~H ) |
|
| 24 | 22 23 | stoic3 | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( A .op T ) o. U ) : ~H --> ~H ) |
| 25 | homulcl | |- ( ( A e. CC /\ ( T o. U ) : ~H --> ~H ) -> ( A .op ( T o. U ) ) : ~H --> ~H ) |
|
| 26 | 14 25 | sylan2 | |- ( ( A e. CC /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( A .op ( T o. U ) ) : ~H --> ~H ) |
| 27 | 26 | 3impb | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A .op ( T o. U ) ) : ~H --> ~H ) |
| 28 | hoeq | |- ( ( ( ( A .op T ) o. U ) : ~H --> ~H /\ ( A .op ( T o. U ) ) : ~H --> ~H ) -> ( A. x e. ~H ( ( ( A .op T ) o. U ) ` x ) = ( ( A .op ( T o. U ) ) ` x ) <-> ( ( A .op T ) o. U ) = ( A .op ( T o. U ) ) ) ) |
|
| 29 | 24 27 28 | syl2anc | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A. x e. ~H ( ( ( A .op T ) o. U ) ` x ) = ( ( A .op ( T o. U ) ) ` x ) <-> ( ( A .op T ) o. U ) = ( A .op ( T o. U ) ) ) ) |
| 30 | 21 29 | mpbid | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( A .op T ) o. U ) = ( A .op ( T o. U ) ) ) |