This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idunop | |- ( _I |` ~H ) e. UniOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi | |- ( _I |` ~H ) : ~H -1-1-onto-> ~H |
|
| 2 | f1ofo | |- ( ( _I |` ~H ) : ~H -1-1-onto-> ~H -> ( _I |` ~H ) : ~H -onto-> ~H ) |
|
| 3 | 1 2 | ax-mp | |- ( _I |` ~H ) : ~H -onto-> ~H |
| 4 | fvresi | |- ( x e. ~H -> ( ( _I |` ~H ) ` x ) = x ) |
|
| 5 | fvresi | |- ( y e. ~H -> ( ( _I |` ~H ) ` y ) = y ) |
|
| 6 | 4 5 | oveqan12d | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( ( _I |` ~H ) ` x ) .ih ( ( _I |` ~H ) ` y ) ) = ( x .ih y ) ) |
| 7 | 6 | rgen2 | |- A. x e. ~H A. y e. ~H ( ( ( _I |` ~H ) ` x ) .ih ( ( _I |` ~H ) ` y ) ) = ( x .ih y ) |
| 8 | elunop | |- ( ( _I |` ~H ) e. UniOp <-> ( ( _I |` ~H ) : ~H -onto-> ~H /\ A. x e. ~H A. y e. ~H ( ( ( _I |` ~H ) ` x ) .ih ( ( _I |` ~H ) ` y ) ) = ( x .ih y ) ) ) |
|
| 9 | 3 7 8 | mpbir2an | |- ( _I |` ~H ) e. UniOp |