This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 13-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnopmul | |- ( ( T e. LinOp /\ A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A .h ( T ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | |- 0h e. ~H |
|
| 2 | lnopl | |- ( ( ( T e. LinOp /\ A e. CC ) /\ ( B e. ~H /\ 0h e. ~H ) ) -> ( T ` ( ( A .h B ) +h 0h ) ) = ( ( A .h ( T ` B ) ) +h ( T ` 0h ) ) ) |
|
| 3 | 1 2 | mpanr2 | |- ( ( ( T e. LinOp /\ A e. CC ) /\ B e. ~H ) -> ( T ` ( ( A .h B ) +h 0h ) ) = ( ( A .h ( T ` B ) ) +h ( T ` 0h ) ) ) |
| 4 | 3 | 3impa | |- ( ( T e. LinOp /\ A e. CC /\ B e. ~H ) -> ( T ` ( ( A .h B ) +h 0h ) ) = ( ( A .h ( T ` B ) ) +h ( T ` 0h ) ) ) |
| 5 | hvmulcl | |- ( ( A e. CC /\ B e. ~H ) -> ( A .h B ) e. ~H ) |
|
| 6 | ax-hvaddid | |- ( ( A .h B ) e. ~H -> ( ( A .h B ) +h 0h ) = ( A .h B ) ) |
|
| 7 | 5 6 | syl | |- ( ( A e. CC /\ B e. ~H ) -> ( ( A .h B ) +h 0h ) = ( A .h B ) ) |
| 8 | 7 | 3adant1 | |- ( ( T e. LinOp /\ A e. CC /\ B e. ~H ) -> ( ( A .h B ) +h 0h ) = ( A .h B ) ) |
| 9 | 8 | fveq2d | |- ( ( T e. LinOp /\ A e. CC /\ B e. ~H ) -> ( T ` ( ( A .h B ) +h 0h ) ) = ( T ` ( A .h B ) ) ) |
| 10 | lnop0 | |- ( T e. LinOp -> ( T ` 0h ) = 0h ) |
|
| 11 | 10 | oveq2d | |- ( T e. LinOp -> ( ( A .h ( T ` B ) ) +h ( T ` 0h ) ) = ( ( A .h ( T ` B ) ) +h 0h ) ) |
| 12 | 11 | 3ad2ant1 | |- ( ( T e. LinOp /\ A e. CC /\ B e. ~H ) -> ( ( A .h ( T ` B ) ) +h ( T ` 0h ) ) = ( ( A .h ( T ` B ) ) +h 0h ) ) |
| 13 | lnopf | |- ( T e. LinOp -> T : ~H --> ~H ) |
|
| 14 | 13 | ffvelcdmda | |- ( ( T e. LinOp /\ B e. ~H ) -> ( T ` B ) e. ~H ) |
| 15 | hvmulcl | |- ( ( A e. CC /\ ( T ` B ) e. ~H ) -> ( A .h ( T ` B ) ) e. ~H ) |
|
| 16 | 14 15 | sylan2 | |- ( ( A e. CC /\ ( T e. LinOp /\ B e. ~H ) ) -> ( A .h ( T ` B ) ) e. ~H ) |
| 17 | 16 | 3impb | |- ( ( A e. CC /\ T e. LinOp /\ B e. ~H ) -> ( A .h ( T ` B ) ) e. ~H ) |
| 18 | 17 | 3com12 | |- ( ( T e. LinOp /\ A e. CC /\ B e. ~H ) -> ( A .h ( T ` B ) ) e. ~H ) |
| 19 | ax-hvaddid | |- ( ( A .h ( T ` B ) ) e. ~H -> ( ( A .h ( T ` B ) ) +h 0h ) = ( A .h ( T ` B ) ) ) |
|
| 20 | 18 19 | syl | |- ( ( T e. LinOp /\ A e. CC /\ B e. ~H ) -> ( ( A .h ( T ` B ) ) +h 0h ) = ( A .h ( T ` B ) ) ) |
| 21 | 12 20 | eqtrd | |- ( ( T e. LinOp /\ A e. CC /\ B e. ~H ) -> ( ( A .h ( T ` B ) ) +h ( T ` 0h ) ) = ( A .h ( T ` B ) ) ) |
| 22 | 4 9 21 | 3eqtr3d | |- ( ( T e. LinOp /\ A e. CC /\ B e. ~H ) -> ( T ` ( A .h B ) ) = ( A .h ( T ` B ) ) ) |