This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of SH is a subspace. (Contributed by NM, 6-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhsst.1 | |- U = <. <. +h , .h >. , normh >. |
|
| hhsst.2 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
||
| Assertion | hhsst | |- ( H e. SH -> W e. ( SubSp ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhsst.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | hhsst.2 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| 3 | 2 | hhssnvt | |- ( H e. SH -> W e. NrmCVec ) |
| 4 | resss | |- ( +h |` ( H X. H ) ) C_ +h |
|
| 5 | resss | |- ( .h |` ( CC X. H ) ) C_ .h |
|
| 6 | resss | |- ( normh |` H ) C_ normh |
|
| 7 | 4 5 6 | 3pm3.2i | |- ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) |
| 8 | 3 7 | jctir | |- ( H e. SH -> ( W e. NrmCVec /\ ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) ) ) |
| 9 | 1 | hhnv | |- U e. NrmCVec |
| 10 | 1 | hhva | |- +h = ( +v ` U ) |
| 11 | 2 | hhssva | |- ( +h |` ( H X. H ) ) = ( +v ` W ) |
| 12 | 1 | hhsm | |- .h = ( .sOLD ` U ) |
| 13 | 2 | hhsssm | |- ( .h |` ( CC X. H ) ) = ( .sOLD ` W ) |
| 14 | 1 | hhnm | |- normh = ( normCV ` U ) |
| 15 | 2 | hhssnm | |- ( normh |` H ) = ( normCV ` W ) |
| 16 | eqid | |- ( SubSp ` U ) = ( SubSp ` U ) |
|
| 17 | 10 11 12 13 14 15 16 | isssp | |- ( U e. NrmCVec -> ( W e. ( SubSp ` U ) <-> ( W e. NrmCVec /\ ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) ) ) ) |
| 18 | 9 17 | ax-mp | |- ( W e. ( SubSp ` U ) <-> ( W e. NrmCVec /\ ( ( +h |` ( H X. H ) ) C_ +h /\ ( .h |` ( CC X. H ) ) C_ .h /\ ( normh |` H ) C_ normh ) ) ) |
| 19 | 8 18 | sylibr | |- ( H e. SH -> W e. ( SubSp ` U ) ) |