This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm operation on a subspace. (Contributed by NM, 8-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhss.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| Assertion | hhssnm | |- ( normh |` H ) = ( normCV ` W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhss.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| 2 | eqid | |- ( normCV ` W ) = ( normCV ` W ) |
|
| 3 | 2 | nmcvfval | |- ( normCV ` W ) = ( 2nd ` W ) |
| 4 | 1 | fveq2i | |- ( 2nd ` W ) = ( 2nd ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) |
| 5 | opex | |- <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. e. _V |
|
| 6 | normf | |- normh : ~H --> RR |
|
| 7 | ax-hilex | |- ~H e. _V |
|
| 8 | fex | |- ( ( normh : ~H --> RR /\ ~H e. _V ) -> normh e. _V ) |
|
| 9 | 6 7 8 | mp2an | |- normh e. _V |
| 10 | 9 | resex | |- ( normh |` H ) e. _V |
| 11 | 5 10 | op2nd | |- ( 2nd ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = ( normh |` H ) |
| 12 | 3 4 11 | 3eqtrri | |- ( normh |` H ) = ( normCV ` W ) |