This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vector addition operation on a subspace. (Contributed by NM, 8-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhss.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| Assertion | hhssva | |- ( +h |` ( H X. H ) ) = ( +v ` W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhss.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| 2 | eqid | |- ( +v ` W ) = ( +v ` W ) |
|
| 3 | 2 | vafval | |- ( +v ` W ) = ( 1st ` ( 1st ` W ) ) |
| 4 | 1 | fveq2i | |- ( 1st ` W ) = ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) |
| 5 | opex | |- <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. e. _V |
|
| 6 | normf | |- normh : ~H --> RR |
|
| 7 | ax-hilex | |- ~H e. _V |
|
| 8 | fex | |- ( ( normh : ~H --> RR /\ ~H e. _V ) -> normh e. _V ) |
|
| 9 | 6 7 8 | mp2an | |- normh e. _V |
| 10 | 9 | resex | |- ( normh |` H ) e. _V |
| 11 | 5 10 | op1st | |- ( 1st ` <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. ) = <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. |
| 12 | 4 11 | eqtri | |- ( 1st ` W ) = <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. |
| 13 | 12 | fveq2i | |- ( 1st ` ( 1st ` W ) ) = ( 1st ` <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. ) |
| 14 | hilablo | |- +h e. AbelOp |
|
| 15 | resexg | |- ( +h e. AbelOp -> ( +h |` ( H X. H ) ) e. _V ) |
|
| 16 | 14 15 | ax-mp | |- ( +h |` ( H X. H ) ) e. _V |
| 17 | hvmulex | |- .h e. _V |
|
| 18 | 17 | resex | |- ( .h |` ( CC X. H ) ) e. _V |
| 19 | 16 18 | op1st | |- ( 1st ` <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. ) = ( +h |` ( H X. H ) ) |
| 20 | 3 13 19 | 3eqtrri | |- ( +h |` ( H X. H ) ) = ( +v ` W ) |