This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the distance function of the metric space of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhssims2.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| hhssims2.3 | |- D = ( IndMet ` W ) |
||
| hhssims2.2 | |- H e. SH |
||
| Assertion | hhssmetdval | |- ( ( A e. H /\ B e. H ) -> ( A D B ) = ( normh ` ( A -h B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssims2.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| 2 | hhssims2.3 | |- D = ( IndMet ` W ) |
|
| 3 | hhssims2.2 | |- H e. SH |
|
| 4 | 1 3 | hhssnv | |- W e. NrmCVec |
| 5 | 1 3 | hhssba | |- H = ( BaseSet ` W ) |
| 6 | 1 3 | hhssvs | |- ( -h |` ( H X. H ) ) = ( -v ` W ) |
| 7 | 1 | hhssnm | |- ( normh |` H ) = ( normCV ` W ) |
| 8 | 5 6 7 2 | imsdval | |- ( ( W e. NrmCVec /\ A e. H /\ B e. H ) -> ( A D B ) = ( ( normh |` H ) ` ( A ( -h |` ( H X. H ) ) B ) ) ) |
| 9 | 4 8 | mp3an1 | |- ( ( A e. H /\ B e. H ) -> ( A D B ) = ( ( normh |` H ) ` ( A ( -h |` ( H X. H ) ) B ) ) ) |
| 10 | ovres | |- ( ( A e. H /\ B e. H ) -> ( A ( -h |` ( H X. H ) ) B ) = ( A -h B ) ) |
|
| 11 | 10 | fveq2d | |- ( ( A e. H /\ B e. H ) -> ( ( normh |` H ) ` ( A ( -h |` ( H X. H ) ) B ) ) = ( ( normh |` H ) ` ( A -h B ) ) ) |
| 12 | shsubcl | |- ( ( H e. SH /\ A e. H /\ B e. H ) -> ( A -h B ) e. H ) |
|
| 13 | 3 12 | mp3an1 | |- ( ( A e. H /\ B e. H ) -> ( A -h B ) e. H ) |
| 14 | fvres | |- ( ( A -h B ) e. H -> ( ( normh |` H ) ` ( A -h B ) ) = ( normh ` ( A -h B ) ) ) |
|
| 15 | 13 14 | syl | |- ( ( A e. H /\ B e. H ) -> ( ( normh |` H ) ` ( A -h B ) ) = ( normh ` ( A -h B ) ) ) |
| 16 | 9 11 15 | 3eqtrd | |- ( ( A e. H /\ B e. H ) -> ( A D B ) = ( normh ` ( A -h B ) ) ) |