This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vector subtraction operation on a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhsssh2.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| hhssba.2 | |- H e. SH |
||
| Assertion | hhssvs | |- ( -h |` ( H X. H ) ) = ( -v ` W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhsssh2.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| 2 | hhssba.2 | |- H e. SH |
|
| 3 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 4 | 3 | hhnv | |- <. <. +h , .h >. , normh >. e. NrmCVec |
| 5 | 3 1 | hhsst | |- ( H e. SH -> W e. ( SubSp ` <. <. +h , .h >. , normh >. ) ) |
| 6 | 2 5 | ax-mp | |- W e. ( SubSp ` <. <. +h , .h >. , normh >. ) |
| 7 | 1 2 | hhssba | |- H = ( BaseSet ` W ) |
| 8 | 3 | hhvs | |- -h = ( -v ` <. <. +h , .h >. , normh >. ) |
| 9 | eqid | |- ( -v ` W ) = ( -v ` W ) |
|
| 10 | eqid | |- ( SubSp ` <. <. +h , .h >. , normh >. ) = ( SubSp ` <. <. +h , .h >. , normh >. ) |
|
| 11 | 7 8 9 10 | sspm | |- ( ( <. <. +h , .h >. , normh >. e. NrmCVec /\ W e. ( SubSp ` <. <. +h , .h >. , normh >. ) ) -> ( -v ` W ) = ( -h |` ( H X. H ) ) ) |
| 12 | 4 6 11 | mp2an | |- ( -v ` W ) = ( -h |` ( H X. H ) ) |
| 13 | 12 | eqcomi | |- ( -h |` ( H X. H ) ) = ( -v ` W ) |