This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the distance function of the metric space of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhssims2.1 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| hhssims2.3 | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | ||
| hhssims2.2 | ⊢ 𝐻 ∈ Sℋ | ||
| Assertion | hhssmetdval | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 𝐷 𝐵 ) = ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhssims2.1 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| 2 | hhssims2.3 | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) | |
| 3 | hhssims2.2 | ⊢ 𝐻 ∈ Sℋ | |
| 4 | 1 3 | hhssnv | ⊢ 𝑊 ∈ NrmCVec |
| 5 | 1 3 | hhssba | ⊢ 𝐻 = ( BaseSet ‘ 𝑊 ) |
| 6 | 1 3 | hhssvs | ⊢ ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( −𝑣 ‘ 𝑊 ) |
| 7 | 1 | hhssnm | ⊢ ( normℎ ↾ 𝐻 ) = ( normCV ‘ 𝑊 ) |
| 8 | 5 6 7 2 | imsdval | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 𝐷 𝐵 ) = ( ( normℎ ↾ 𝐻 ) ‘ ( 𝐴 ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝐵 ) ) ) |
| 9 | 4 8 | mp3an1 | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 𝐷 𝐵 ) = ( ( normℎ ↾ 𝐻 ) ‘ ( 𝐴 ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝐵 ) ) ) |
| 10 | ovres | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝐵 ) = ( 𝐴 −ℎ 𝐵 ) ) | |
| 11 | 10 | fveq2d | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝐴 ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) 𝐵 ) ) = ( ( normℎ ↾ 𝐻 ) ‘ ( 𝐴 −ℎ 𝐵 ) ) ) |
| 12 | shsubcl | ⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 ) | |
| 13 | 3 12 | mp3an1 | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 ) |
| 14 | fvres | ⊢ ( ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( ( normℎ ↾ 𝐻 ) ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ) |
| 16 | 9 11 15 | 3eqtrd | ⊢ ( ( 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 𝐷 𝐵 ) = ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ) |