This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induced metric of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhsssh2.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| hhssims.2 | |- H e. SH |
||
| hhssims.3 | |- D = ( ( normh o. -h ) |` ( H X. H ) ) |
||
| Assertion | hhssims | |- D = ( IndMet ` W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhsssh2.1 | |- W = <. <. ( +h |` ( H X. H ) ) , ( .h |` ( CC X. H ) ) >. , ( normh |` H ) >. |
|
| 2 | hhssims.2 | |- H e. SH |
|
| 3 | hhssims.3 | |- D = ( ( normh o. -h ) |` ( H X. H ) ) |
|
| 4 | 1 2 | hhssnv | |- W e. NrmCVec |
| 5 | 1 2 | hhssvs | |- ( -h |` ( H X. H ) ) = ( -v ` W ) |
| 6 | 1 | hhssnm | |- ( normh |` H ) = ( normCV ` W ) |
| 7 | eqid | |- ( IndMet ` W ) = ( IndMet ` W ) |
|
| 8 | 5 6 7 | imsval | |- ( W e. NrmCVec -> ( IndMet ` W ) = ( ( normh |` H ) o. ( -h |` ( H X. H ) ) ) ) |
| 9 | 4 8 | ax-mp | |- ( IndMet ` W ) = ( ( normh |` H ) o. ( -h |` ( H X. H ) ) ) |
| 10 | resco | |- ( ( normh o. -h ) |` ( H X. H ) ) = ( normh o. ( -h |` ( H X. H ) ) ) |
|
| 11 | 1 2 | hhssvsf | |- ( -h |` ( H X. H ) ) : ( H X. H ) --> H |
| 12 | frn | |- ( ( -h |` ( H X. H ) ) : ( H X. H ) --> H -> ran ( -h |` ( H X. H ) ) C_ H ) |
|
| 13 | 11 12 | ax-mp | |- ran ( -h |` ( H X. H ) ) C_ H |
| 14 | cores | |- ( ran ( -h |` ( H X. H ) ) C_ H -> ( ( normh |` H ) o. ( -h |` ( H X. H ) ) ) = ( normh o. ( -h |` ( H X. H ) ) ) ) |
|
| 15 | 13 14 | ax-mp | |- ( ( normh |` H ) o. ( -h |` ( H X. H ) ) ) = ( normh o. ( -h |` ( H X. H ) ) ) |
| 16 | 10 15 | eqtr4i | |- ( ( normh o. -h ) |` ( H X. H ) ) = ( ( normh |` H ) o. ( -h |` ( H X. H ) ) ) |
| 17 | 9 16 | eqtr4i | |- ( IndMet ` W ) = ( ( normh o. -h ) |` ( H X. H ) ) |
| 18 | 3 17 | eqtr4i | |- D = ( IndMet ` W ) |