This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the induced metric of a normed complex vector space. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | imsval.3 | |- M = ( -v ` U ) |
|
| imsval.6 | |- N = ( normCV ` U ) |
||
| imsval.8 | |- D = ( IndMet ` U ) |
||
| Assertion | imsval | |- ( U e. NrmCVec -> D = ( N o. M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsval.3 | |- M = ( -v ` U ) |
|
| 2 | imsval.6 | |- N = ( normCV ` U ) |
|
| 3 | imsval.8 | |- D = ( IndMet ` U ) |
|
| 4 | fveq2 | |- ( u = U -> ( normCV ` u ) = ( normCV ` U ) ) |
|
| 5 | fveq2 | |- ( u = U -> ( -v ` u ) = ( -v ` U ) ) |
|
| 6 | 4 5 | coeq12d | |- ( u = U -> ( ( normCV ` u ) o. ( -v ` u ) ) = ( ( normCV ` U ) o. ( -v ` U ) ) ) |
| 7 | df-ims | |- IndMet = ( u e. NrmCVec |-> ( ( normCV ` u ) o. ( -v ` u ) ) ) |
|
| 8 | fvex | |- ( normCV ` U ) e. _V |
|
| 9 | fvex | |- ( -v ` U ) e. _V |
|
| 10 | 8 9 | coex | |- ( ( normCV ` U ) o. ( -v ` U ) ) e. _V |
| 11 | 6 7 10 | fvmpt | |- ( U e. NrmCVec -> ( IndMet ` U ) = ( ( normCV ` U ) o. ( -v ` U ) ) ) |
| 12 | 2 1 | coeq12i | |- ( N o. M ) = ( ( normCV ` U ) o. ( -v ` U ) ) |
| 13 | 11 3 12 | 3eqtr4g | |- ( U e. NrmCVec -> D = ( N o. M ) ) |