This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induced metric of a subspace. (Contributed by NM, 10-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhsssh2.1 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| hhssims.2 | ⊢ 𝐻 ∈ Sℋ | ||
| hhssims.3 | ⊢ 𝐷 = ( ( normℎ ∘ −ℎ ) ↾ ( 𝐻 × 𝐻 ) ) | ||
| Assertion | hhssims | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhsssh2.1 | ⊢ 𝑊 = 〈 〈 ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) , ( ·ℎ ↾ ( ℂ × 𝐻 ) ) 〉 , ( normℎ ↾ 𝐻 ) 〉 | |
| 2 | hhssims.2 | ⊢ 𝐻 ∈ Sℋ | |
| 3 | hhssims.3 | ⊢ 𝐷 = ( ( normℎ ∘ −ℎ ) ↾ ( 𝐻 × 𝐻 ) ) | |
| 4 | 1 2 | hhssnv | ⊢ 𝑊 ∈ NrmCVec |
| 5 | 1 2 | hhssvs | ⊢ ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( −𝑣 ‘ 𝑊 ) |
| 6 | 1 | hhssnm | ⊢ ( normℎ ↾ 𝐻 ) = ( normCV ‘ 𝑊 ) |
| 7 | eqid | ⊢ ( IndMet ‘ 𝑊 ) = ( IndMet ‘ 𝑊 ) | |
| 8 | 5 6 7 | imsval | ⊢ ( 𝑊 ∈ NrmCVec → ( IndMet ‘ 𝑊 ) = ( ( normℎ ↾ 𝐻 ) ∘ ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) ) ) |
| 9 | 4 8 | ax-mp | ⊢ ( IndMet ‘ 𝑊 ) = ( ( normℎ ↾ 𝐻 ) ∘ ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) ) |
| 10 | resco | ⊢ ( ( normℎ ∘ −ℎ ) ↾ ( 𝐻 × 𝐻 ) ) = ( normℎ ∘ ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) ) | |
| 11 | 1 2 | hhssvsf | ⊢ ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ 𝐻 |
| 12 | frn | ⊢ ( ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) : ( 𝐻 × 𝐻 ) ⟶ 𝐻 → ran ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 ) | |
| 13 | 11 12 | ax-mp | ⊢ ran ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 |
| 14 | cores | ⊢ ( ran ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) ⊆ 𝐻 → ( ( normℎ ↾ 𝐻 ) ∘ ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) ) = ( normℎ ∘ ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) ) ) | |
| 15 | 13 14 | ax-mp | ⊢ ( ( normℎ ↾ 𝐻 ) ∘ ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) ) = ( normℎ ∘ ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) ) |
| 16 | 10 15 | eqtr4i | ⊢ ( ( normℎ ∘ −ℎ ) ↾ ( 𝐻 × 𝐻 ) ) = ( ( normℎ ↾ 𝐻 ) ∘ ( −ℎ ↾ ( 𝐻 × 𝐻 ) ) ) |
| 17 | 9 16 | eqtr4i | ⊢ ( IndMet ‘ 𝑊 ) = ( ( normℎ ∘ −ℎ ) ↾ ( 𝐻 × 𝐻 ) ) |
| 18 | 3 17 | eqtr4i | ⊢ 𝐷 = ( IndMet ‘ 𝑊 ) |