This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert space is a complex vector space. Vector addition is +h , and scalar product is .h . (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hilvc | |- <. +h , .h >. e. CVecOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilablo | |- +h e. AbelOp |
|
| 2 | ax-hfvadd | |- +h : ( ~H X. ~H ) --> ~H |
|
| 3 | 2 | fdmi | |- dom +h = ( ~H X. ~H ) |
| 4 | ax-hfvmul | |- .h : ( CC X. ~H ) --> ~H |
|
| 5 | ax-hvmulid | |- ( x e. ~H -> ( 1 .h x ) = x ) |
|
| 6 | ax-hvdistr1 | |- ( ( y e. CC /\ x e. ~H /\ z e. ~H ) -> ( y .h ( x +h z ) ) = ( ( y .h x ) +h ( y .h z ) ) ) |
|
| 7 | ax-hvdistr2 | |- ( ( y e. CC /\ z e. CC /\ x e. ~H ) -> ( ( y + z ) .h x ) = ( ( y .h x ) +h ( z .h x ) ) ) |
|
| 8 | ax-hvmulass | |- ( ( y e. CC /\ z e. CC /\ x e. ~H ) -> ( ( y x. z ) .h x ) = ( y .h ( z .h x ) ) ) |
|
| 9 | eqid | |- <. +h , .h >. = <. +h , .h >. |
|
| 10 | 1 3 4 5 6 7 8 9 | isvciOLD | |- <. +h , .h >. e. CVecOLD |