This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expansion of the inner product value ipval . (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dipfval.1 | |- X = ( BaseSet ` U ) |
|
| dipfval.2 | |- G = ( +v ` U ) |
||
| dipfval.4 | |- S = ( .sOLD ` U ) |
||
| dipfval.6 | |- N = ( normCV ` U ) |
||
| dipfval.7 | |- P = ( .iOLD ` U ) |
||
| ipval3.3 | |- M = ( -v ` U ) |
||
| Assertion | ipval3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A M B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A M ( _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dipfval.1 | |- X = ( BaseSet ` U ) |
|
| 2 | dipfval.2 | |- G = ( +v ` U ) |
|
| 3 | dipfval.4 | |- S = ( .sOLD ` U ) |
|
| 4 | dipfval.6 | |- N = ( normCV ` U ) |
|
| 5 | dipfval.7 | |- P = ( .iOLD ` U ) |
|
| 6 | ipval3.3 | |- M = ( -v ` U ) |
|
| 7 | 1 2 3 4 5 | ipval2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 8 | 1 2 3 6 | nvmval | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M B ) = ( A G ( -u 1 S B ) ) ) |
| 9 | 8 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A M B ) ) = ( N ` ( A G ( -u 1 S B ) ) ) ) |
| 10 | 9 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A M B ) ) ^ 2 ) = ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) |
| 11 | 10 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A M B ) ) ^ 2 ) ) = ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) ) |
| 12 | ax-icn | |- _i e. CC |
|
| 13 | 1 3 | nvscl | |- ( ( U e. NrmCVec /\ _i e. CC /\ B e. X ) -> ( _i S B ) e. X ) |
| 14 | 12 13 | mp3an2 | |- ( ( U e. NrmCVec /\ B e. X ) -> ( _i S B ) e. X ) |
| 15 | 14 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i S B ) e. X ) |
| 16 | 1 2 3 6 | nvmval | |- ( ( U e. NrmCVec /\ A e. X /\ ( _i S B ) e. X ) -> ( A M ( _i S B ) ) = ( A G ( -u 1 S ( _i S B ) ) ) ) |
| 17 | 15 16 | syld3an3 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M ( _i S B ) ) = ( A G ( -u 1 S ( _i S B ) ) ) ) |
| 18 | neg1cn | |- -u 1 e. CC |
|
| 19 | 1 3 | nvsass | |- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ _i e. CC /\ B e. X ) ) -> ( ( -u 1 x. _i ) S B ) = ( -u 1 S ( _i S B ) ) ) |
| 20 | 18 19 | mp3anr1 | |- ( ( U e. NrmCVec /\ ( _i e. CC /\ B e. X ) ) -> ( ( -u 1 x. _i ) S B ) = ( -u 1 S ( _i S B ) ) ) |
| 21 | 12 20 | mpanr1 | |- ( ( U e. NrmCVec /\ B e. X ) -> ( ( -u 1 x. _i ) S B ) = ( -u 1 S ( _i S B ) ) ) |
| 22 | 12 | mulm1i | |- ( -u 1 x. _i ) = -u _i |
| 23 | 22 | oveq1i | |- ( ( -u 1 x. _i ) S B ) = ( -u _i S B ) |
| 24 | 21 23 | eqtr3di | |- ( ( U e. NrmCVec /\ B e. X ) -> ( -u 1 S ( _i S B ) ) = ( -u _i S B ) ) |
| 25 | 24 | 3adant2 | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( -u 1 S ( _i S B ) ) = ( -u _i S B ) ) |
| 26 | 25 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A G ( -u 1 S ( _i S B ) ) ) = ( A G ( -u _i S B ) ) ) |
| 27 | 17 26 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M ( _i S B ) ) = ( A G ( -u _i S B ) ) ) |
| 28 | 27 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A M ( _i S B ) ) ) = ( N ` ( A G ( -u _i S B ) ) ) ) |
| 29 | 28 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( N ` ( A M ( _i S B ) ) ) ^ 2 ) = ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) |
| 30 | 29 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A M ( _i S B ) ) ) ^ 2 ) ) = ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) |
| 31 | 30 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A M ( _i S B ) ) ) ^ 2 ) ) ) = ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) |
| 32 | 11 31 | oveq12d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A M B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A M ( _i S B ) ) ) ^ 2 ) ) ) ) = ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) ) |
| 33 | 32 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A M B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A M ( _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) = ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A G ( -u 1 S B ) ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A G ( -u _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 34 | 7 33 | eqtr4d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) = ( ( ( ( ( N ` ( A G B ) ) ^ 2 ) - ( ( N ` ( A M B ) ) ^ 2 ) ) + ( _i x. ( ( ( N ` ( A G ( _i S B ) ) ) ^ 2 ) - ( ( N ` ( A M ( _i S B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |