This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hilbert space of the Hilbert Space Explorer is an inner product space. (Contributed by NM, 24-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hhnv.1 | |- U = <. <. +h , .h >. , normh >. |
|
| Assertion | hhph | |- U e. CPreHilOLD |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhnv.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 3 | 2 | hhnv | |- <. <. +h , .h >. , normh >. e. NrmCVec |
| 4 | normpar | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( ( normh ` ( x -h y ) ) ^ 2 ) + ( ( normh ` ( x +h y ) ) ^ 2 ) ) = ( ( 2 x. ( ( normh ` x ) ^ 2 ) ) + ( 2 x. ( ( normh ` y ) ^ 2 ) ) ) ) |
|
| 5 | hvsubval | |- ( ( x e. ~H /\ y e. ~H ) -> ( x -h y ) = ( x +h ( -u 1 .h y ) ) ) |
|
| 6 | 5 | fveq2d | |- ( ( x e. ~H /\ y e. ~H ) -> ( normh ` ( x -h y ) ) = ( normh ` ( x +h ( -u 1 .h y ) ) ) ) |
| 7 | 6 | oveq1d | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( normh ` ( x -h y ) ) ^ 2 ) = ( ( normh ` ( x +h ( -u 1 .h y ) ) ) ^ 2 ) ) |
| 8 | 7 | oveq2d | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( ( normh ` ( x +h y ) ) ^ 2 ) + ( ( normh ` ( x -h y ) ) ^ 2 ) ) = ( ( ( normh ` ( x +h y ) ) ^ 2 ) + ( ( normh ` ( x +h ( -u 1 .h y ) ) ) ^ 2 ) ) ) |
| 9 | hvaddcl | |- ( ( x e. ~H /\ y e. ~H ) -> ( x +h y ) e. ~H ) |
|
| 10 | normcl | |- ( ( x +h y ) e. ~H -> ( normh ` ( x +h y ) ) e. RR ) |
|
| 11 | 9 10 | syl | |- ( ( x e. ~H /\ y e. ~H ) -> ( normh ` ( x +h y ) ) e. RR ) |
| 12 | 11 | recnd | |- ( ( x e. ~H /\ y e. ~H ) -> ( normh ` ( x +h y ) ) e. CC ) |
| 13 | 12 | sqcld | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( normh ` ( x +h y ) ) ^ 2 ) e. CC ) |
| 14 | hvsubcl | |- ( ( x e. ~H /\ y e. ~H ) -> ( x -h y ) e. ~H ) |
|
| 15 | normcl | |- ( ( x -h y ) e. ~H -> ( normh ` ( x -h y ) ) e. RR ) |
|
| 16 | 15 | recnd | |- ( ( x -h y ) e. ~H -> ( normh ` ( x -h y ) ) e. CC ) |
| 17 | 14 16 | syl | |- ( ( x e. ~H /\ y e. ~H ) -> ( normh ` ( x -h y ) ) e. CC ) |
| 18 | 17 | sqcld | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( normh ` ( x -h y ) ) ^ 2 ) e. CC ) |
| 19 | 13 18 | addcomd | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( ( normh ` ( x +h y ) ) ^ 2 ) + ( ( normh ` ( x -h y ) ) ^ 2 ) ) = ( ( ( normh ` ( x -h y ) ) ^ 2 ) + ( ( normh ` ( x +h y ) ) ^ 2 ) ) ) |
| 20 | 8 19 | eqtr3d | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( ( normh ` ( x +h y ) ) ^ 2 ) + ( ( normh ` ( x +h ( -u 1 .h y ) ) ) ^ 2 ) ) = ( ( ( normh ` ( x -h y ) ) ^ 2 ) + ( ( normh ` ( x +h y ) ) ^ 2 ) ) ) |
| 21 | normcl | |- ( x e. ~H -> ( normh ` x ) e. RR ) |
|
| 22 | 21 | recnd | |- ( x e. ~H -> ( normh ` x ) e. CC ) |
| 23 | 22 | sqcld | |- ( x e. ~H -> ( ( normh ` x ) ^ 2 ) e. CC ) |
| 24 | normcl | |- ( y e. ~H -> ( normh ` y ) e. RR ) |
|
| 25 | 24 | recnd | |- ( y e. ~H -> ( normh ` y ) e. CC ) |
| 26 | 25 | sqcld | |- ( y e. ~H -> ( ( normh ` y ) ^ 2 ) e. CC ) |
| 27 | 2cn | |- 2 e. CC |
|
| 28 | adddi | |- ( ( 2 e. CC /\ ( ( normh ` x ) ^ 2 ) e. CC /\ ( ( normh ` y ) ^ 2 ) e. CC ) -> ( 2 x. ( ( ( normh ` x ) ^ 2 ) + ( ( normh ` y ) ^ 2 ) ) ) = ( ( 2 x. ( ( normh ` x ) ^ 2 ) ) + ( 2 x. ( ( normh ` y ) ^ 2 ) ) ) ) |
|
| 29 | 27 28 | mp3an1 | |- ( ( ( ( normh ` x ) ^ 2 ) e. CC /\ ( ( normh ` y ) ^ 2 ) e. CC ) -> ( 2 x. ( ( ( normh ` x ) ^ 2 ) + ( ( normh ` y ) ^ 2 ) ) ) = ( ( 2 x. ( ( normh ` x ) ^ 2 ) ) + ( 2 x. ( ( normh ` y ) ^ 2 ) ) ) ) |
| 30 | 23 26 29 | syl2an | |- ( ( x e. ~H /\ y e. ~H ) -> ( 2 x. ( ( ( normh ` x ) ^ 2 ) + ( ( normh ` y ) ^ 2 ) ) ) = ( ( 2 x. ( ( normh ` x ) ^ 2 ) ) + ( 2 x. ( ( normh ` y ) ^ 2 ) ) ) ) |
| 31 | 4 20 30 | 3eqtr4d | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( ( normh ` ( x +h y ) ) ^ 2 ) + ( ( normh ` ( x +h ( -u 1 .h y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( normh ` x ) ^ 2 ) + ( ( normh ` y ) ^ 2 ) ) ) ) |
| 32 | 31 | rgen2 | |- A. x e. ~H A. y e. ~H ( ( ( normh ` ( x +h y ) ) ^ 2 ) + ( ( normh ` ( x +h ( -u 1 .h y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( normh ` x ) ^ 2 ) + ( ( normh ` y ) ^ 2 ) ) ) |
| 33 | hilablo | |- +h e. AbelOp |
|
| 34 | 33 | elexi | |- +h e. _V |
| 35 | hvmulex | |- .h e. _V |
|
| 36 | normf | |- normh : ~H --> RR |
|
| 37 | ax-hilex | |- ~H e. _V |
|
| 38 | fex | |- ( ( normh : ~H --> RR /\ ~H e. _V ) -> normh e. _V ) |
|
| 39 | 36 37 38 | mp2an | |- normh e. _V |
| 40 | 1 | eleq1i | |- ( U e. CPreHilOLD <-> <. <. +h , .h >. , normh >. e. CPreHilOLD ) |
| 41 | ablogrpo | |- ( +h e. AbelOp -> +h e. GrpOp ) |
|
| 42 | 33 41 | ax-mp | |- +h e. GrpOp |
| 43 | ax-hfvadd | |- +h : ( ~H X. ~H ) --> ~H |
|
| 44 | 43 | fdmi | |- dom +h = ( ~H X. ~H ) |
| 45 | 42 44 | grporn | |- ~H = ran +h |
| 46 | 45 | isphg | |- ( ( +h e. _V /\ .h e. _V /\ normh e. _V ) -> ( <. <. +h , .h >. , normh >. e. CPreHilOLD <-> ( <. <. +h , .h >. , normh >. e. NrmCVec /\ A. x e. ~H A. y e. ~H ( ( ( normh ` ( x +h y ) ) ^ 2 ) + ( ( normh ` ( x +h ( -u 1 .h y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( normh ` x ) ^ 2 ) + ( ( normh ` y ) ^ 2 ) ) ) ) ) ) |
| 47 | 40 46 | bitrid | |- ( ( +h e. _V /\ .h e. _V /\ normh e. _V ) -> ( U e. CPreHilOLD <-> ( <. <. +h , .h >. , normh >. e. NrmCVec /\ A. x e. ~H A. y e. ~H ( ( ( normh ` ( x +h y ) ) ^ 2 ) + ( ( normh ` ( x +h ( -u 1 .h y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( normh ` x ) ^ 2 ) + ( ( normh ` y ) ^ 2 ) ) ) ) ) ) |
| 48 | 34 35 39 47 | mp3an | |- ( U e. CPreHilOLD <-> ( <. <. +h , .h >. , normh >. e. NrmCVec /\ A. x e. ~H A. y e. ~H ( ( ( normh ` ( x +h y ) ) ^ 2 ) + ( ( normh ` ( x +h ( -u 1 .h y ) ) ) ^ 2 ) ) = ( 2 x. ( ( ( normh ` x ) ^ 2 ) + ( ( normh ` y ) ^ 2 ) ) ) ) ) |
| 49 | 3 32 48 | mpbir2an | |- U e. CPreHilOLD |