This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of ReedSimon p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of Axiom ax-his3 . (Contributed by NM, 17-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | polid | |- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) = ( ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A .ih B ) = ( if ( A e. ~H , A , 0h ) .ih B ) ) |
|
| 2 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A +h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ) |
|
| 3 | 2 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) ) |
| 4 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ) |
|
| 5 | 4 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h B ) ) ^ 2 ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) ) |
| 6 | 3 5 | oveq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) = ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) ) ) |
| 7 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A +h ( _i .h B ) ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) ) ) |
|
| 8 | 7 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) ) ^ 2 ) ) |
| 9 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h ( _i .h B ) ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) ) ) |
|
| 10 | 9 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) ) ^ 2 ) ) |
| 11 | 8 10 | oveq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) = ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) ) ^ 2 ) ) ) |
| 12 | 11 | oveq2d | |- ( A = if ( A e. ~H , A , 0h ) -> ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) = ( _i x. ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) ) ^ 2 ) ) ) ) |
| 13 | 6 12 | oveq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) = ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) ) ^ 2 ) ) ) ) ) |
| 14 | 13 | oveq1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) = ( ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 15 | 1 14 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( A .ih B ) = ( ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) <-> ( if ( A e. ~H , A , 0h ) .ih B ) = ( ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) ) ) |
| 16 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) .ih B ) = ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) ) |
|
| 17 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) +h B ) = ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) |
|
| 18 | 17 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ) |
| 19 | 18 | oveq1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) ) |
| 20 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
|
| 21 | 20 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
| 22 | 21 | oveq1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) ) |
| 23 | 19 22 | oveq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) ) = ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) ) ) |
| 24 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( _i .h B ) = ( _i .h if ( B e. ~H , B , 0h ) ) ) |
|
| 25 | 24 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) = ( if ( A e. ~H , A , 0h ) +h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) |
| 26 | 25 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ) |
| 27 | 26 | oveq1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) ) ^ 2 ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ^ 2 ) ) |
| 28 | 24 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) = ( if ( A e. ~H , A , 0h ) -h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) |
| 29 | 28 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ) |
| 30 | 29 | oveq1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) ) ^ 2 ) = ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ^ 2 ) ) |
| 31 | 27 30 | oveq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) ) ^ 2 ) ) = ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ^ 2 ) ) ) |
| 32 | 31 | oveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( _i x. ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) ) ^ 2 ) ) ) = ( _i x. ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ^ 2 ) ) ) ) |
| 33 | 23 32 | oveq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) ) ^ 2 ) ) ) ) = ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ^ 2 ) ) ) ) ) |
| 34 | 33 | oveq1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) = ( ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ^ 2 ) ) ) ) / 4 ) ) |
| 35 | 16 34 | eqeq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. ~H , A , 0h ) .ih B ) = ( ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h B ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) <-> ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) = ( ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ^ 2 ) ) ) ) / 4 ) ) ) |
| 36 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 37 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 38 | 36 37 | polidi | |- ( if ( A e. ~H , A , 0h ) .ih if ( B e. ~H , B , 0h ) ) = ( ( ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( if ( A e. ~H , A , 0h ) +h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ^ 2 ) - ( ( normh ` ( if ( A e. ~H , A , 0h ) -h ( _i .h if ( B e. ~H , B , 0h ) ) ) ) ^ 2 ) ) ) ) / 4 ) |
| 39 | 15 35 38 | dedth2h | |- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) = ( ( ( ( ( normh ` ( A +h B ) ) ^ 2 ) - ( ( normh ` ( A -h B ) ) ^ 2 ) ) + ( _i x. ( ( ( normh ` ( A +h ( _i .h B ) ) ) ^ 2 ) - ( ( normh ` ( A -h ( _i .h B ) ) ) ^ 2 ) ) ) ) / 4 ) ) |