This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping for the inner product operation. (Contributed by NM, 28-Jan-2008) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcl.1 | |- X = ( BaseSet ` U ) |
|
| ipcl.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | ipf | |- ( U e. NrmCVec -> P : ( X X. X ) --> CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcl.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ipcl.7 | |- P = ( .iOLD ` U ) |
|
| 3 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 4 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 5 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 6 | 1 3 4 5 2 | ipval | |- ( ( U e. NrmCVec /\ x e. X /\ y e. X ) -> ( x P y ) = ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) / 4 ) ) |
| 7 | 1 2 | dipcl | |- ( ( U e. NrmCVec /\ x e. X /\ y e. X ) -> ( x P y ) e. CC ) |
| 8 | 6 7 | eqeltrrd | |- ( ( U e. NrmCVec /\ x e. X /\ y e. X ) -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) / 4 ) e. CC ) |
| 9 | 8 | 3expib | |- ( U e. NrmCVec -> ( ( x e. X /\ y e. X ) -> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) / 4 ) e. CC ) ) |
| 10 | 9 | ralrimivv | |- ( U e. NrmCVec -> A. x e. X A. y e. X ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) / 4 ) e. CC ) |
| 11 | eqid | |- ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) / 4 ) ) = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) / 4 ) ) |
|
| 12 | 11 | fmpo | |- ( A. x e. X A. y e. X ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) / 4 ) e. CC <-> ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) / 4 ) ) : ( X X. X ) --> CC ) |
| 13 | 10 12 | sylib | |- ( U e. NrmCVec -> ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) / 4 ) ) : ( X X. X ) --> CC ) |
| 14 | 1 3 4 5 2 | dipfval | |- ( U e. NrmCVec -> P = ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) / 4 ) ) ) |
| 15 | 14 | feq1d | |- ( U e. NrmCVec -> ( P : ( X X. X ) --> CC <-> ( x e. X , y e. X |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` U ) ` ( x ( +v ` U ) ( ( _i ^ k ) ( .sOLD ` U ) y ) ) ) ^ 2 ) ) / 4 ) ) : ( X X. X ) --> CC ) ) |
| 16 | 13 15 | mpbird | |- ( U e. NrmCVec -> P : ( X X. X ) --> CC ) |