This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The adjoint of an operator belongs to the adjoint function's domain. (Note: the converse is dependent on our definition of function value, since it uses ndmfv .) (Contributed by NM, 19-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmadjrnb | |- ( T e. dom adjh <-> ( adjh ` T ) e. dom adjh ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmadjrn | |- ( T e. dom adjh -> ( adjh ` T ) e. dom adjh ) |
|
| 2 | ax-hv0cl | |- 0h e. ~H |
|
| 3 | 2 | n0ii | |- -. ~H = (/) |
| 4 | eqcom | |- ( (/) = ~H <-> ~H = (/) ) |
|
| 5 | 3 4 | mtbir | |- -. (/) = ~H |
| 6 | dm0 | |- dom (/) = (/) |
|
| 7 | 6 | eqeq1i | |- ( dom (/) = ~H <-> (/) = ~H ) |
| 8 | 5 7 | mtbir | |- -. dom (/) = ~H |
| 9 | fdm | |- ( (/) : ~H --> ~H -> dom (/) = ~H ) |
|
| 10 | 8 9 | mto | |- -. (/) : ~H --> ~H |
| 11 | dmadjop | |- ( (/) e. dom adjh -> (/) : ~H --> ~H ) |
|
| 12 | 10 11 | mto | |- -. (/) e. dom adjh |
| 13 | ndmfv | |- ( -. T e. dom adjh -> ( adjh ` T ) = (/) ) |
|
| 14 | 13 | eleq1d | |- ( -. T e. dom adjh -> ( ( adjh ` T ) e. dom adjh <-> (/) e. dom adjh ) ) |
| 15 | 12 14 | mtbiri | |- ( -. T e. dom adjh -> -. ( adjh ` T ) e. dom adjh ) |
| 16 | 15 | con4i | |- ( ( adjh ` T ) e. dom adjh -> T e. dom adjh ) |
| 17 | 1 16 | impbii | |- ( T e. dom adjh <-> ( adjh ` T ) e. dom adjh ) |