This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swapping order of subtraction doesn't change the norm of a vector. (Contributed by NM, 14-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | normsub | |- ( ( A e. ~H /\ B e. ~H ) -> ( normh ` ( A -h B ) ) = ( normh ` ( B -h A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( A -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) ) |
|
| 2 | oveq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( B -h A ) = ( B -h if ( A e. ~H , A , 0h ) ) ) |
|
| 3 | 2 | fveq2d | |- ( A = if ( A e. ~H , A , 0h ) -> ( normh ` ( B -h A ) ) = ( normh ` ( B -h if ( A e. ~H , A , 0h ) ) ) ) |
| 4 | 1 3 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( normh ` ( A -h B ) ) = ( normh ` ( B -h A ) ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = ( normh ` ( B -h if ( A e. ~H , A , 0h ) ) ) ) ) |
| 5 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
|
| 6 | 5 | fveq2d | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) ) |
| 7 | fvoveq1 | |- ( B = if ( B e. ~H , B , 0h ) -> ( normh ` ( B -h if ( A e. ~H , A , 0h ) ) ) = ( normh ` ( if ( B e. ~H , B , 0h ) -h if ( A e. ~H , A , 0h ) ) ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( normh ` ( if ( A e. ~H , A , 0h ) -h B ) ) = ( normh ` ( B -h if ( A e. ~H , A , 0h ) ) ) <-> ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) = ( normh ` ( if ( B e. ~H , B , 0h ) -h if ( A e. ~H , A , 0h ) ) ) ) ) |
| 9 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 10 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 11 | 9 10 | normsubi | |- ( normh ` ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) = ( normh ` ( if ( B e. ~H , B , 0h ) -h if ( A e. ~H , A , 0h ) ) ) |
| 12 | 4 8 11 | dedth2h | |- ( ( A e. ~H /\ B e. ~H ) -> ( normh ` ( A -h B ) ) = ( normh ` ( B -h A ) ) ) |