This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of continuous functionals on Hilbert space. For every "epsilon" ( y ) there is a "delta" ( z ) such that... (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cnfn | |- ContFn = { t e. ( CC ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccnfn | |- ContFn |
|
| 1 | vt | |- t |
|
| 2 | cc | |- CC |
|
| 3 | cmap | |- ^m |
|
| 4 | chba | |- ~H |
|
| 5 | 2 4 3 | co | |- ( CC ^m ~H ) |
| 6 | vx | |- x |
|
| 7 | vy | |- y |
|
| 8 | crp | |- RR+ |
|
| 9 | vz | |- z |
|
| 10 | vw | |- w |
|
| 11 | cno | |- normh |
|
| 12 | 10 | cv | |- w |
| 13 | cmv | |- -h |
|
| 14 | 6 | cv | |- x |
| 15 | 12 14 13 | co | |- ( w -h x ) |
| 16 | 15 11 | cfv | |- ( normh ` ( w -h x ) ) |
| 17 | clt | |- < |
|
| 18 | 9 | cv | |- z |
| 19 | 16 18 17 | wbr | |- ( normh ` ( w -h x ) ) < z |
| 20 | cabs | |- abs |
|
| 21 | 1 | cv | |- t |
| 22 | 12 21 | cfv | |- ( t ` w ) |
| 23 | cmin | |- - |
|
| 24 | 14 21 | cfv | |- ( t ` x ) |
| 25 | 22 24 23 | co | |- ( ( t ` w ) - ( t ` x ) ) |
| 26 | 25 20 | cfv | |- ( abs ` ( ( t ` w ) - ( t ` x ) ) ) |
| 27 | 7 | cv | |- y |
| 28 | 26 27 17 | wbr | |- ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y |
| 29 | 19 28 | wi | |- ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) |
| 30 | 29 10 4 | wral | |- A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) |
| 31 | 30 9 8 | wrex | |- E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) |
| 32 | 31 7 8 | wral | |- A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) |
| 33 | 32 6 4 | wral | |- A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) |
| 34 | 33 1 5 | crab | |- { t e. ( CC ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) } |
| 35 | 0 34 | wceq | |- ContFn = { t e. ( CC ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) } |