This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a set is greater than a nonnegative integer N if and only if the size of the union of that set with a disjoint singleton is greater than N + 1. (Contributed by BTernaryTau, 10-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashunsnggt | |- ( ( ( A e. V /\ B e. W /\ N e. NN0 ) /\ -. B e. A ) -> ( N < ( # ` A ) <-> ( N + 1 ) < ( # ` ( A u. { B } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 2 | 1 | rexrd | |- ( N e. NN0 -> N e. RR* ) |
| 3 | hashxrcl | |- ( A e. V -> ( # ` A ) e. RR* ) |
|
| 4 | 1re | |- 1 e. RR |
|
| 5 | xltadd1 | |- ( ( N e. RR* /\ ( # ` A ) e. RR* /\ 1 e. RR ) -> ( N < ( # ` A ) <-> ( N +e 1 ) < ( ( # ` A ) +e 1 ) ) ) |
|
| 6 | 4 5 | mp3an3 | |- ( ( N e. RR* /\ ( # ` A ) e. RR* ) -> ( N < ( # ` A ) <-> ( N +e 1 ) < ( ( # ` A ) +e 1 ) ) ) |
| 7 | 2 3 6 | syl2an | |- ( ( N e. NN0 /\ A e. V ) -> ( N < ( # ` A ) <-> ( N +e 1 ) < ( ( # ` A ) +e 1 ) ) ) |
| 8 | 7 | ancoms | |- ( ( A e. V /\ N e. NN0 ) -> ( N < ( # ` A ) <-> ( N +e 1 ) < ( ( # ` A ) +e 1 ) ) ) |
| 9 | rexadd | |- ( ( N e. RR /\ 1 e. RR ) -> ( N +e 1 ) = ( N + 1 ) ) |
|
| 10 | 4 9 | mpan2 | |- ( N e. RR -> ( N +e 1 ) = ( N + 1 ) ) |
| 11 | 1 10 | syl | |- ( N e. NN0 -> ( N +e 1 ) = ( N + 1 ) ) |
| 12 | 11 | adantl | |- ( ( A e. V /\ N e. NN0 ) -> ( N +e 1 ) = ( N + 1 ) ) |
| 13 | 12 | breq1d | |- ( ( A e. V /\ N e. NN0 ) -> ( ( N +e 1 ) < ( ( # ` A ) +e 1 ) <-> ( N + 1 ) < ( ( # ` A ) +e 1 ) ) ) |
| 14 | 8 13 | bitrd | |- ( ( A e. V /\ N e. NN0 ) -> ( N < ( # ` A ) <-> ( N + 1 ) < ( ( # ` A ) +e 1 ) ) ) |
| 15 | 14 | 3adant2 | |- ( ( A e. V /\ B e. W /\ N e. NN0 ) -> ( N < ( # ` A ) <-> ( N + 1 ) < ( ( # ` A ) +e 1 ) ) ) |
| 16 | 15 | adantr | |- ( ( ( A e. V /\ B e. W /\ N e. NN0 ) /\ -. B e. A ) -> ( N < ( # ` A ) <-> ( N + 1 ) < ( ( # ` A ) +e 1 ) ) ) |
| 17 | hashunsngx | |- ( ( A e. V /\ B e. W ) -> ( -. B e. A -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) +e 1 ) ) ) |
|
| 18 | 17 | 3impia | |- ( ( A e. V /\ B e. W /\ -. B e. A ) -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) +e 1 ) ) |
| 19 | 18 | eqcomd | |- ( ( A e. V /\ B e. W /\ -. B e. A ) -> ( ( # ` A ) +e 1 ) = ( # ` ( A u. { B } ) ) ) |
| 20 | 19 | 3expa | |- ( ( ( A e. V /\ B e. W ) /\ -. B e. A ) -> ( ( # ` A ) +e 1 ) = ( # ` ( A u. { B } ) ) ) |
| 21 | 20 | 3adantl3 | |- ( ( ( A e. V /\ B e. W /\ N e. NN0 ) /\ -. B e. A ) -> ( ( # ` A ) +e 1 ) = ( # ` ( A u. { B } ) ) ) |
| 22 | 21 | breq2d | |- ( ( ( A e. V /\ B e. W /\ N e. NN0 ) /\ -. B e. A ) -> ( ( N + 1 ) < ( ( # ` A ) +e 1 ) <-> ( N + 1 ) < ( # ` ( A u. { B } ) ) ) ) |
| 23 | 16 22 | bitrd | |- ( ( ( A e. V /\ B e. W /\ N e. NN0 ) /\ -. B e. A ) -> ( N < ( # ` A ) <-> ( N + 1 ) < ( # ` ( A u. { B } ) ) ) ) |