This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite part of the size function maps all finite sets to their cardinality, as members of NN0 . (Contributed by Mario Carneiro, 13-Sep-2013) (Revised by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashgval.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| hashkf.2 | |- K = ( G o. card ) |
||
| Assertion | hashkf | |- K : Fin --> NN0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgval.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 2 | hashkf.2 | |- K = ( G o. card ) |
|
| 3 | frfnom | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) Fn _om |
|
| 4 | 1 | fneq1i | |- ( G Fn _om <-> ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) Fn _om ) |
| 5 | 3 4 | mpbir | |- G Fn _om |
| 6 | fnfun | |- ( G Fn _om -> Fun G ) |
|
| 7 | 5 6 | ax-mp | |- Fun G |
| 8 | cardf2 | |- card : { y | E. x e. On x ~~ y } --> On |
|
| 9 | ffun | |- ( card : { y | E. x e. On x ~~ y } --> On -> Fun card ) |
|
| 10 | 8 9 | ax-mp | |- Fun card |
| 11 | funco | |- ( ( Fun G /\ Fun card ) -> Fun ( G o. card ) ) |
|
| 12 | 7 10 11 | mp2an | |- Fun ( G o. card ) |
| 13 | dmco | |- dom ( G o. card ) = ( `' card " dom G ) |
|
| 14 | 5 | fndmi | |- dom G = _om |
| 15 | 14 | imaeq2i | |- ( `' card " dom G ) = ( `' card " _om ) |
| 16 | funfn | |- ( Fun card <-> card Fn dom card ) |
|
| 17 | 10 16 | mpbi | |- card Fn dom card |
| 18 | elpreima | |- ( card Fn dom card -> ( y e. ( `' card " _om ) <-> ( y e. dom card /\ ( card ` y ) e. _om ) ) ) |
|
| 19 | 17 18 | ax-mp | |- ( y e. ( `' card " _om ) <-> ( y e. dom card /\ ( card ` y ) e. _om ) ) |
| 20 | id | |- ( ( card ` y ) e. _om -> ( card ` y ) e. _om ) |
|
| 21 | cardid2 | |- ( y e. dom card -> ( card ` y ) ~~ y ) |
|
| 22 | 21 | ensymd | |- ( y e. dom card -> y ~~ ( card ` y ) ) |
| 23 | breq2 | |- ( x = ( card ` y ) -> ( y ~~ x <-> y ~~ ( card ` y ) ) ) |
|
| 24 | 23 | rspcev | |- ( ( ( card ` y ) e. _om /\ y ~~ ( card ` y ) ) -> E. x e. _om y ~~ x ) |
| 25 | 20 22 24 | syl2anr | |- ( ( y e. dom card /\ ( card ` y ) e. _om ) -> E. x e. _om y ~~ x ) |
| 26 | isfi | |- ( y e. Fin <-> E. x e. _om y ~~ x ) |
|
| 27 | 25 26 | sylibr | |- ( ( y e. dom card /\ ( card ` y ) e. _om ) -> y e. Fin ) |
| 28 | finnum | |- ( y e. Fin -> y e. dom card ) |
|
| 29 | ficardom | |- ( y e. Fin -> ( card ` y ) e. _om ) |
|
| 30 | 28 29 | jca | |- ( y e. Fin -> ( y e. dom card /\ ( card ` y ) e. _om ) ) |
| 31 | 27 30 | impbii | |- ( ( y e. dom card /\ ( card ` y ) e. _om ) <-> y e. Fin ) |
| 32 | 19 31 | bitri | |- ( y e. ( `' card " _om ) <-> y e. Fin ) |
| 33 | 32 | eqriv | |- ( `' card " _om ) = Fin |
| 34 | 13 15 33 | 3eqtri | |- dom ( G o. card ) = Fin |
| 35 | df-fn | |- ( ( G o. card ) Fn Fin <-> ( Fun ( G o. card ) /\ dom ( G o. card ) = Fin ) ) |
|
| 36 | 12 34 35 | mpbir2an | |- ( G o. card ) Fn Fin |
| 37 | 2 | fneq1i | |- ( K Fn Fin <-> ( G o. card ) Fn Fin ) |
| 38 | 36 37 | mpbir | |- K Fn Fin |
| 39 | 2 | fveq1i | |- ( K ` y ) = ( ( G o. card ) ` y ) |
| 40 | fvco | |- ( ( Fun card /\ y e. dom card ) -> ( ( G o. card ) ` y ) = ( G ` ( card ` y ) ) ) |
|
| 41 | 10 28 40 | sylancr | |- ( y e. Fin -> ( ( G o. card ) ` y ) = ( G ` ( card ` y ) ) ) |
| 42 | 39 41 | eqtrid | |- ( y e. Fin -> ( K ` y ) = ( G ` ( card ` y ) ) ) |
| 43 | 1 | hashgf1o | |- G : _om -1-1-onto-> NN0 |
| 44 | f1of | |- ( G : _om -1-1-onto-> NN0 -> G : _om --> NN0 ) |
|
| 45 | 43 44 | ax-mp | |- G : _om --> NN0 |
| 46 | 45 | ffvelcdmi | |- ( ( card ` y ) e. _om -> ( G ` ( card ` y ) ) e. NN0 ) |
| 47 | 29 46 | syl | |- ( y e. Fin -> ( G ` ( card ` y ) ) e. NN0 ) |
| 48 | 42 47 | eqeltrd | |- ( y e. Fin -> ( K ` y ) e. NN0 ) |
| 49 | 48 | rgen | |- A. y e. Fin ( K ` y ) e. NN0 |
| 50 | ffnfv | |- ( K : Fin --> NN0 <-> ( K Fn Fin /\ A. y e. Fin ( K ` y ) e. NN0 ) ) |
|
| 51 | 38 49 50 | mpbir2an | |- K : Fin --> NN0 |