This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a set is not empty. (Contributed by Alexander van der Vekens, 23-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashneq0 | |- ( A e. V -> ( 0 < ( # ` A ) <-> A =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashnn0pnf | |- ( A e. V -> ( ( # ` A ) e. NN0 \/ ( # ` A ) = +oo ) ) |
|
| 2 | nn0re | |- ( ( # ` A ) e. NN0 -> ( # ` A ) e. RR ) |
|
| 3 | nn0ge0 | |- ( ( # ` A ) e. NN0 -> 0 <_ ( # ` A ) ) |
|
| 4 | ne0gt0 | |- ( ( ( # ` A ) e. RR /\ 0 <_ ( # ` A ) ) -> ( ( # ` A ) =/= 0 <-> 0 < ( # ` A ) ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( # ` A ) e. NN0 -> ( ( # ` A ) =/= 0 <-> 0 < ( # ` A ) ) ) |
| 6 | 5 | bicomd | |- ( ( # ` A ) e. NN0 -> ( 0 < ( # ` A ) <-> ( # ` A ) =/= 0 ) ) |
| 7 | breq2 | |- ( ( # ` A ) = +oo -> ( 0 < ( # ` A ) <-> 0 < +oo ) ) |
|
| 8 | 0ltpnf | |- 0 < +oo |
|
| 9 | 0re | |- 0 e. RR |
|
| 10 | renepnf | |- ( 0 e. RR -> 0 =/= +oo ) |
|
| 11 | 9 10 | ax-mp | |- 0 =/= +oo |
| 12 | 11 | necomi | |- +oo =/= 0 |
| 13 | 8 12 | 2th | |- ( 0 < +oo <-> +oo =/= 0 ) |
| 14 | neeq1 | |- ( ( # ` A ) = +oo -> ( ( # ` A ) =/= 0 <-> +oo =/= 0 ) ) |
|
| 15 | 13 14 | bitr4id | |- ( ( # ` A ) = +oo -> ( 0 < +oo <-> ( # ` A ) =/= 0 ) ) |
| 16 | 7 15 | bitrd | |- ( ( # ` A ) = +oo -> ( 0 < ( # ` A ) <-> ( # ` A ) =/= 0 ) ) |
| 17 | 6 16 | jaoi | |- ( ( ( # ` A ) e. NN0 \/ ( # ` A ) = +oo ) -> ( 0 < ( # ` A ) <-> ( # ` A ) =/= 0 ) ) |
| 18 | 1 17 | syl | |- ( A e. V -> ( 0 < ( # ` A ) <-> ( # ` A ) =/= 0 ) ) |
| 19 | hasheq0 | |- ( A e. V -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
|
| 20 | 19 | necon3bid | |- ( A e. V -> ( ( # ` A ) =/= 0 <-> A =/= (/) ) ) |
| 21 | 18 20 | bitrd | |- ( A e. V -> ( 0 < ( # ` A ) <-> A =/= (/) ) ) |