This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If ( alephsuc A ) is equinumerous to the powerset of ( alephA ) , then ( alephA ) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephgch | |- ( ( aleph ` suc A ) ~~ ~P ( aleph ` A ) -> ( aleph ` A ) e. GCH ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephnbtwn2 | |- -. ( ( aleph ` A ) ~< x /\ x ~< ( aleph ` suc A ) ) |
|
| 2 | sdomen2 | |- ( ( aleph ` suc A ) ~~ ~P ( aleph ` A ) -> ( x ~< ( aleph ` suc A ) <-> x ~< ~P ( aleph ` A ) ) ) |
|
| 3 | 2 | anbi2d | |- ( ( aleph ` suc A ) ~~ ~P ( aleph ` A ) -> ( ( ( aleph ` A ) ~< x /\ x ~< ( aleph ` suc A ) ) <-> ( ( aleph ` A ) ~< x /\ x ~< ~P ( aleph ` A ) ) ) ) |
| 4 | 1 3 | mtbii | |- ( ( aleph ` suc A ) ~~ ~P ( aleph ` A ) -> -. ( ( aleph ` A ) ~< x /\ x ~< ~P ( aleph ` A ) ) ) |
| 5 | 4 | alrimiv | |- ( ( aleph ` suc A ) ~~ ~P ( aleph ` A ) -> A. x -. ( ( aleph ` A ) ~< x /\ x ~< ~P ( aleph ` A ) ) ) |
| 6 | 5 | olcd | |- ( ( aleph ` suc A ) ~~ ~P ( aleph ` A ) -> ( ( aleph ` A ) e. Fin \/ A. x -. ( ( aleph ` A ) ~< x /\ x ~< ~P ( aleph ` A ) ) ) ) |
| 7 | fvex | |- ( aleph ` A ) e. _V |
|
| 8 | elgch | |- ( ( aleph ` A ) e. _V -> ( ( aleph ` A ) e. GCH <-> ( ( aleph ` A ) e. Fin \/ A. x -. ( ( aleph ` A ) ~< x /\ x ~< ~P ( aleph ` A ) ) ) ) ) |
|
| 9 | 7 8 | ax-mp | |- ( ( aleph ` A ) e. GCH <-> ( ( aleph ` A ) e. Fin \/ A. x -. ( ( aleph ` A ) ~< x /\ x ~< ~P ( aleph ` A ) ) ) ) |
| 10 | 6 9 | sylibr | |- ( ( aleph ` suc A ) ~~ ~P ( aleph ` A ) -> ( aleph ` A ) e. GCH ) |