This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elgch | |- ( A e. V -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-gch | |- GCH = ( Fin u. { y | A. x -. ( y ~< x /\ x ~< ~P y ) } ) |
|
| 2 | 1 | eleq2i | |- ( A e. GCH <-> A e. ( Fin u. { y | A. x -. ( y ~< x /\ x ~< ~P y ) } ) ) |
| 3 | elun | |- ( A e. ( Fin u. { y | A. x -. ( y ~< x /\ x ~< ~P y ) } ) <-> ( A e. Fin \/ A e. { y | A. x -. ( y ~< x /\ x ~< ~P y ) } ) ) |
|
| 4 | 2 3 | bitri | |- ( A e. GCH <-> ( A e. Fin \/ A e. { y | A. x -. ( y ~< x /\ x ~< ~P y ) } ) ) |
| 5 | breq1 | |- ( y = A -> ( y ~< x <-> A ~< x ) ) |
|
| 6 | pweq | |- ( y = A -> ~P y = ~P A ) |
|
| 7 | 6 | breq2d | |- ( y = A -> ( x ~< ~P y <-> x ~< ~P A ) ) |
| 8 | 5 7 | anbi12d | |- ( y = A -> ( ( y ~< x /\ x ~< ~P y ) <-> ( A ~< x /\ x ~< ~P A ) ) ) |
| 9 | 8 | notbid | |- ( y = A -> ( -. ( y ~< x /\ x ~< ~P y ) <-> -. ( A ~< x /\ x ~< ~P A ) ) ) |
| 10 | 9 | albidv | |- ( y = A -> ( A. x -. ( y ~< x /\ x ~< ~P y ) <-> A. x -. ( A ~< x /\ x ~< ~P A ) ) ) |
| 11 | 10 | elabg | |- ( A e. V -> ( A e. { y | A. x -. ( y ~< x /\ x ~< ~P y ) } <-> A. x -. ( A ~< x /\ x ~< ~P A ) ) ) |
| 12 | 11 | orbi2d | |- ( A e. V -> ( ( A e. Fin \/ A e. { y | A. x -. ( y ~< x /\ x ~< ~P y ) } ) <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) ) |
| 13 | 4 12 | bitrid | |- ( A e. V -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) ) |