This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum and difference of half-sum and half-difference. (Contributed by Paul Chapman, 12-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | halfaddsub | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A + B ) / 2 ) + ( ( A - B ) / 2 ) ) = A /\ ( ( ( A + B ) / 2 ) - ( ( A - B ) / 2 ) ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ppncan | |- ( ( A e. CC /\ B e. CC /\ A e. CC ) -> ( ( A + B ) + ( A - B ) ) = ( A + A ) ) |
|
| 2 | 1 | 3anidm13 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + ( A - B ) ) = ( A + A ) ) |
| 3 | 2times | |- ( A e. CC -> ( 2 x. A ) = ( A + A ) ) |
|
| 4 | 3 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. A ) = ( A + A ) ) |
| 5 | 2 4 | eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + ( A - B ) ) = ( 2 x. A ) ) |
| 6 | 5 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) + ( A - B ) ) / 2 ) = ( ( 2 x. A ) / 2 ) ) |
| 7 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 8 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 9 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 10 | divdir | |- ( ( ( A + B ) e. CC /\ ( A - B ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( A + B ) + ( A - B ) ) / 2 ) = ( ( ( A + B ) / 2 ) + ( ( A - B ) / 2 ) ) ) |
|
| 11 | 9 10 | mp3an3 | |- ( ( ( A + B ) e. CC /\ ( A - B ) e. CC ) -> ( ( ( A + B ) + ( A - B ) ) / 2 ) = ( ( ( A + B ) / 2 ) + ( ( A - B ) / 2 ) ) ) |
| 12 | 7 8 11 | syl2anc | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) + ( A - B ) ) / 2 ) = ( ( ( A + B ) / 2 ) + ( ( A - B ) / 2 ) ) ) |
| 13 | 2cn | |- 2 e. CC |
|
| 14 | 2ne0 | |- 2 =/= 0 |
|
| 15 | divcan3 | |- ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. A ) / 2 ) = A ) |
|
| 16 | 13 14 15 | mp3an23 | |- ( A e. CC -> ( ( 2 x. A ) / 2 ) = A ) |
| 17 | 16 | adantr | |- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. A ) / 2 ) = A ) |
| 18 | 6 12 17 | 3eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) / 2 ) + ( ( A - B ) / 2 ) ) = A ) |
| 19 | pnncan | |- ( ( A e. CC /\ B e. CC /\ B e. CC ) -> ( ( A + B ) - ( A - B ) ) = ( B + B ) ) |
|
| 20 | 19 | 3anidm23 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - ( A - B ) ) = ( B + B ) ) |
| 21 | 2times | |- ( B e. CC -> ( 2 x. B ) = ( B + B ) ) |
|
| 22 | 21 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( 2 x. B ) = ( B + B ) ) |
| 23 | 20 22 | eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) - ( A - B ) ) = ( 2 x. B ) ) |
| 24 | 23 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) - ( A - B ) ) / 2 ) = ( ( 2 x. B ) / 2 ) ) |
| 25 | divsubdir | |- ( ( ( A + B ) e. CC /\ ( A - B ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( A + B ) - ( A - B ) ) / 2 ) = ( ( ( A + B ) / 2 ) - ( ( A - B ) / 2 ) ) ) |
|
| 26 | 9 25 | mp3an3 | |- ( ( ( A + B ) e. CC /\ ( A - B ) e. CC ) -> ( ( ( A + B ) - ( A - B ) ) / 2 ) = ( ( ( A + B ) / 2 ) - ( ( A - B ) / 2 ) ) ) |
| 27 | 7 8 26 | syl2anc | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) - ( A - B ) ) / 2 ) = ( ( ( A + B ) / 2 ) - ( ( A - B ) / 2 ) ) ) |
| 28 | divcan3 | |- ( ( B e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( 2 x. B ) / 2 ) = B ) |
|
| 29 | 13 14 28 | mp3an23 | |- ( B e. CC -> ( ( 2 x. B ) / 2 ) = B ) |
| 30 | 29 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( ( 2 x. B ) / 2 ) = B ) |
| 31 | 24 27 30 | 3eqtr3d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) / 2 ) - ( ( A - B ) / 2 ) ) = B ) |
| 32 | 18 31 | jca | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A + B ) / 2 ) + ( ( A - B ) / 2 ) ) = A /\ ( ( ( A + B ) / 2 ) - ( ( A - B ) / 2 ) ) = B ) ) |