This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtracting the half of a number from the number yields the half of the number. (Contributed by AV, 28-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subhalfhalf | |- ( A e. CC -> ( A - ( A / 2 ) ) = ( A / 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( A e. CC -> A e. CC ) |
|
| 2 | 2cnd | |- ( A e. CC -> 2 e. CC ) |
|
| 3 | 2ne0 | |- 2 =/= 0 |
|
| 4 | 3 | a1i | |- ( A e. CC -> 2 =/= 0 ) |
| 5 | 1 2 4 | divcan1d | |- ( A e. CC -> ( ( A / 2 ) x. 2 ) = A ) |
| 6 | 5 | eqcomd | |- ( A e. CC -> A = ( ( A / 2 ) x. 2 ) ) |
| 7 | 6 | oveq1d | |- ( A e. CC -> ( A - ( A / 2 ) ) = ( ( ( A / 2 ) x. 2 ) - ( A / 2 ) ) ) |
| 8 | halfcl | |- ( A e. CC -> ( A / 2 ) e. CC ) |
|
| 9 | 8 2 | mulcomd | |- ( A e. CC -> ( ( A / 2 ) x. 2 ) = ( 2 x. ( A / 2 ) ) ) |
| 10 | 9 | oveq1d | |- ( A e. CC -> ( ( ( A / 2 ) x. 2 ) - ( A / 2 ) ) = ( ( 2 x. ( A / 2 ) ) - ( A / 2 ) ) ) |
| 11 | 2 8 | mulsubfacd | |- ( A e. CC -> ( ( 2 x. ( A / 2 ) ) - ( A / 2 ) ) = ( ( 2 - 1 ) x. ( A / 2 ) ) ) |
| 12 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 13 | 12 | a1i | |- ( A e. CC -> ( 2 - 1 ) = 1 ) |
| 14 | 13 | oveq1d | |- ( A e. CC -> ( ( 2 - 1 ) x. ( A / 2 ) ) = ( 1 x. ( A / 2 ) ) ) |
| 15 | 8 | mullidd | |- ( A e. CC -> ( 1 x. ( A / 2 ) ) = ( A / 2 ) ) |
| 16 | 11 14 15 | 3eqtrd | |- ( A e. CC -> ( ( 2 x. ( A / 2 ) ) - ( A / 2 ) ) = ( A / 2 ) ) |
| 17 | 7 10 16 | 3eqtrd | |- ( A e. CC -> ( A - ( A / 2 ) ) = ( A / 2 ) ) |