This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of a word representing a closed walk of a fixed length, definition of ClWWalks expanded. (Contributed by AV, 25-Apr-2021) (Proof shortened by AV, 22-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclwwlknx.v | |- V = ( Vtx ` G ) |
|
| isclwwlknx.e | |- E = ( Edg ` G ) |
||
| Assertion | isclwwlknx | |- ( N e. NN -> ( W e. ( N ClWWalksN G ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclwwlknx.v | |- V = ( Vtx ` G ) |
|
| 2 | isclwwlknx.e | |- E = ( Edg ` G ) |
|
| 3 | eleq1 | |- ( ( # ` W ) = N -> ( ( # ` W ) e. NN <-> N e. NN ) ) |
|
| 4 | len0nnbi | |- ( W e. Word V -> ( W =/= (/) <-> ( # ` W ) e. NN ) ) |
|
| 5 | 4 | biimprcd | |- ( ( # ` W ) e. NN -> ( W e. Word V -> W =/= (/) ) ) |
| 6 | 3 5 | biimtrrdi | |- ( ( # ` W ) = N -> ( N e. NN -> ( W e. Word V -> W =/= (/) ) ) ) |
| 7 | 6 | impcom | |- ( ( N e. NN /\ ( # ` W ) = N ) -> ( W e. Word V -> W =/= (/) ) ) |
| 8 | 7 | imp | |- ( ( ( N e. NN /\ ( # ` W ) = N ) /\ W e. Word V ) -> W =/= (/) ) |
| 9 | 8 | biantrurd | |- ( ( ( N e. NN /\ ( # ` W ) = N ) /\ W e. Word V ) -> ( ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) <-> ( W =/= (/) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) ) |
| 10 | 9 | bicomd | |- ( ( ( N e. NN /\ ( # ` W ) = N ) /\ W e. Word V ) -> ( ( W =/= (/) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) <-> ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
| 11 | 10 | pm5.32da | |- ( ( N e. NN /\ ( # ` W ) = N ) -> ( ( W e. Word V /\ ( W =/= (/) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) <-> ( W e. Word V /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) ) |
| 12 | 11 | ex | |- ( N e. NN -> ( ( # ` W ) = N -> ( ( W e. Word V /\ ( W =/= (/) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) <-> ( W e. Word V /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) ) ) |
| 13 | 12 | pm5.32rd | |- ( N e. NN -> ( ( ( W e. Word V /\ ( W =/= (/) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) /\ ( # ` W ) = N ) <-> ( ( W e. Word V /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) /\ ( # ` W ) = N ) ) ) |
| 14 | isclwwlkn | |- ( W e. ( N ClWWalksN G ) <-> ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) ) |
|
| 15 | 1 2 | isclwwlk | |- ( W e. ( ClWWalks ` G ) <-> ( ( W e. Word V /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) |
| 16 | 3anass | |- ( ( ( W e. Word V /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) <-> ( ( W e. Word V /\ W =/= (/) ) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
|
| 17 | anass | |- ( ( ( W e. Word V /\ W =/= (/) ) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) <-> ( W e. Word V /\ ( W =/= (/) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) ) |
|
| 18 | 16 17 | bitri | |- ( ( ( W e. Word V /\ W =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) <-> ( W e. Word V /\ ( W =/= (/) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) ) |
| 19 | 15 18 | bitri | |- ( W e. ( ClWWalks ` G ) <-> ( W e. Word V /\ ( W =/= (/) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) ) |
| 20 | 19 | anbi1i | |- ( ( W e. ( ClWWalks ` G ) /\ ( # ` W ) = N ) <-> ( ( W e. Word V /\ ( W =/= (/) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) /\ ( # ` W ) = N ) ) |
| 21 | 14 20 | bitri | |- ( W e. ( N ClWWalksN G ) <-> ( ( W e. Word V /\ ( W =/= (/) /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) /\ ( # ` W ) = N ) ) |
| 22 | 3anass | |- ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) <-> ( W e. Word V /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) ) |
|
| 23 | 22 | anbi1i | |- ( ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = N ) <-> ( ( W e. Word V /\ ( A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) ) /\ ( # ` W ) = N ) ) |
| 24 | 13 21 23 | 3bitr4g | |- ( N e. NN -> ( W e. ( N ClWWalksN G ) <-> ( ( W e. Word V /\ A. i e. ( 0 ..^ ( ( # ` W ) - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. E /\ { ( lastS ` W ) , ( W ` 0 ) } e. E ) /\ ( # ` W ) = N ) ) ) |