This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A triangle is a subset of the vertices (of a graph). (Contributed by AV, 26-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grtrissvtx.v | |- V = ( Vtx ` G ) |
|
| Assertion | grtrissvtx | |- ( T e. ( GrTriangles ` G ) -> T C_ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grtrissvtx.v | |- V = ( Vtx ` G ) |
|
| 2 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 3 | 1 2 | grtriprop | |- ( T e. ( GrTriangles ` G ) -> E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. ( Edg ` G ) /\ { x , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) ) |
| 4 | tpssi | |- ( ( x e. V /\ y e. V /\ z e. V ) -> { x , y , z } C_ V ) |
|
| 5 | 4 | 3expa | |- ( ( ( x e. V /\ y e. V ) /\ z e. V ) -> { x , y , z } C_ V ) |
| 6 | sseq1 | |- ( T = { x , y , z } -> ( T C_ V <-> { x , y , z } C_ V ) ) |
|
| 7 | 6 | 3ad2ant1 | |- ( ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. ( Edg ` G ) /\ { x , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) -> ( T C_ V <-> { x , y , z } C_ V ) ) |
| 8 | 5 7 | syl5ibrcom | |- ( ( ( x e. V /\ y e. V ) /\ z e. V ) -> ( ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. ( Edg ` G ) /\ { x , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) -> T C_ V ) ) |
| 9 | 8 | rexlimdva | |- ( ( x e. V /\ y e. V ) -> ( E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. ( Edg ` G ) /\ { x , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) -> T C_ V ) ) |
| 10 | 9 | rexlimivv | |- ( E. x e. V E. y e. V E. z e. V ( T = { x , y , z } /\ ( # ` T ) = 3 /\ ( { x , y } e. ( Edg ` G ) /\ { x , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) -> T C_ V ) |
| 11 | 3 10 | syl | |- ( T e. ( GrTriangles ` G ) -> T C_ V ) |