This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce right identity from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013) (Proof shortened by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinva.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
|
| grpinva.o | |- ( ph -> O e. B ) |
||
| grpinva.i | |- ( ( ph /\ x e. B ) -> ( O .+ x ) = x ) |
||
| grpinva.a | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
||
| grpinva.r | |- ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = O ) |
||
| Assertion | grprida | |- ( ( ph /\ x e. B ) -> ( x .+ O ) = x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinva.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
|
| 2 | grpinva.o | |- ( ph -> O e. B ) |
|
| 3 | grpinva.i | |- ( ( ph /\ x e. B ) -> ( O .+ x ) = x ) |
|
| 4 | grpinva.a | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
|
| 5 | grpinva.r | |- ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = O ) |
|
| 6 | oveq1 | |- ( y = n -> ( y .+ x ) = ( n .+ x ) ) |
|
| 7 | 6 | eqeq1d | |- ( y = n -> ( ( y .+ x ) = O <-> ( n .+ x ) = O ) ) |
| 8 | 7 | cbvrexvw | |- ( E. y e. B ( y .+ x ) = O <-> E. n e. B ( n .+ x ) = O ) |
| 9 | 5 8 | sylib | |- ( ( ph /\ x e. B ) -> E. n e. B ( n .+ x ) = O ) |
| 10 | 4 | caovassg | |- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u .+ v ) .+ w ) = ( u .+ ( v .+ w ) ) ) |
| 11 | 10 | adantlr | |- ( ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u .+ v ) .+ w ) = ( u .+ ( v .+ w ) ) ) |
| 12 | simprl | |- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> x e. B ) |
|
| 13 | simprrl | |- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> n e. B ) |
|
| 14 | 11 12 13 12 | caovassd | |- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> ( ( x .+ n ) .+ x ) = ( x .+ ( n .+ x ) ) ) |
| 15 | simprrr | |- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> ( n .+ x ) = O ) |
|
| 16 | 1 2 3 4 5 12 13 15 | grpinva | |- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> ( x .+ n ) = O ) |
| 17 | 16 | oveq1d | |- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> ( ( x .+ n ) .+ x ) = ( O .+ x ) ) |
| 18 | 15 | oveq2d | |- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> ( x .+ ( n .+ x ) ) = ( x .+ O ) ) |
| 19 | 14 17 18 | 3eqtr3d | |- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> ( O .+ x ) = ( x .+ O ) ) |
| 20 | 19 | anassrs | |- ( ( ( ph /\ x e. B ) /\ ( n e. B /\ ( n .+ x ) = O ) ) -> ( O .+ x ) = ( x .+ O ) ) |
| 21 | 9 20 | rexlimddv | |- ( ( ph /\ x e. B ) -> ( O .+ x ) = ( x .+ O ) ) |
| 22 | 21 3 | eqtr3d | |- ( ( ph /\ x e. B ) -> ( x .+ O ) = x ) |